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In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian
which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of
the Ising Hamiltonian encodes the solution to the computational problem of interest, and the state
overlap with this ground state gives the success probability of the annealing protocol. The form of
the annealing schedule can have a significant impact on the ground state overlap at the end of the
anneal, so precise control over these annealing schedules can be a powerful tool for increasing success
probabilities of annealing protocols. Here we show how superconducting circuits, in particular
capacitively shunted flux qubits (CSFQs), can be used to construct quantum annealing systems by
providing tools for mapping circuit flux biases to Pauli coefficients. We use this mapping to find
customized annealing schedules: appropriate circuit control biases that yield a desired annealing
schedule, while accounting for the physical limitations of the circuitry. We then provide examples
and proposals that utilize this capability to improve quantum annealing performance.

I. INTRODUCTION

Quantum annealing (QA) [1–4] and adiabatic quan-
tum computing [5, 6] provide a framework for finding
the solution of a variety of combinatorial optimization
tasks, where the solution to the problem is encoded in the
ground state of an Ising spin system [7, 8], via continuous
evolution of a quantum system from a trivial initial state
to the ground state of an Ising Hamiltonian. Such analog
models of quantum computing can be used for universal
quantum computation [9–11], and in general do not have
to be strictly adiabatic to yield favorable results [12–16].

In a typical annealing run the system starts with a
transverse field of the form

∑
i σ

x
i , where σαi denotes the

Pauli-α operator acting on qubit i (tensored identity on
the other qubits), and the ground state of the system is
easily prepared. As the anneal progresses, the transverse
field

HX(t) =
∑
i

hxi (t)σxi (1)

is gradually turned off (the transverse field strengths
hxi (t) are decreased to zero) and is replaced by the Ising
problem of interest, of the form

HI(t) =
∑
i

hzi (t)σ
z
i +

∑
i<j

Jij(t)σ
z
i σ

z
j , (2)

where hzi (t) are the longitudinal field strengths and Jij(t)
are the longitudinal coupling strengths, all increasing in
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magnitude from zero. The objective of the anneal is to
prepare a state with high overlap with the ground state
of the Ising Hamiltonian at the end of the anneal. This
is guaranteed by the adiabatic theorem for a sufficiently
slow change between the transverse field and the longitu-
dinal Ising problem [17, 18], but can also happen under
diabatic evolution [12–16]. The precise manner in which
these fields are tuned is called an annealing schedule,
and the success probability of annealing protocols can
depend on the specifics of the schedule [19–21]. Specially
designed schedules can also be used to implement non-
traditional annealing schemes such as Sombrero QA [22],
pausing [23, 24], reverse QA [25], inhomogeneously driven
QA [26, 27], and even optimal versions [28] of the quan-
tum approximate optimization algorithm (QAOA) [29].
In this work we are interested in the setting where ev-
ery coefficient in the set {hxi (t), hzi (t), Jij(t)} is indepen-
dently controllable, which is more general than what is
currently possible using commercial QA devices [30].

The most common quantum annealing devices are built
using superconducting flux qubits [31], where the quan-
tum states are characterized by persistent currents that
flow in opposite directions, which are then mapped to
binary spin variables [32]. The interactions between the
qubits are mediated by tunable coupler circuits [33–35],
which in essence are similar to the flux qubits but are op-
erated in a different regime. These superconducting cir-
cuits are multi-level quantum systems and are controlled
via magnetic fluxes that thread their loops. This high-
dimensional physical circuit model representation is then
mapped to a low-dimensional, low-energy subspace to im-
plement an effective representation of a transverse-field
Ising problem of interacting qubits, i.e., the qubit model.
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Therefore, it is essential to have methods and tools to
map the circuit model onto the qubit model (and spe-
cific Ising instance) that is desired. Such tools provide
the translation between the control of magnetic fluxes at
the circuit level to that of control of the coefficients of
the qubit model Hamiltonian, i.e., the coefficients of the
various Pauli operators (henceforth called “Pauli sched-
ules”), which can then be used to design circuit fluxes
that implement a given customized annealing schedule.

Here, in Sec. II we use the Schrieffer-Wolff (SW) trans-
formation [36] to map circuits onto effective qubit mod-
els, and find the Pauli schedules (see also Ref. [37]). A
drawback of this method is that its computational cost
scales exponentially with the system size. Therefore, we
develop approximations that are accurate enough for im-
plementation but scale linearly with the system size. We
then provide numerical and approximate recipes for find-
ing circuit fluxes that implement a given custom Pauli
schedule in Sec. III. Finally, in Sec. IV we demonstrate
these capabilities by finding annealing schedules for a
set of problems of interest, where the use of customized
schedules is beneficial. We provide all these tools and
methods in an open-source codebase for use by the com-
munity [38].

II. MAPPING FROM CIRCUIT MODEL TO
QUBIT MODEL

In this section we describe how a superconducting cir-
cuit formed by flux qubits and couplers is mapped onto
an effective qubit (Pauli) model. We start by defining
the computational basis for a single flux qubit and find-
ing its qubit model. We then consider interacting flux
qubits and employ the SW transformation to find an
effective low-energy Hamiltonian for such systems, and
use this to find the Pauli coefficients of the joint system.
Next, we introduce approximate methods for finding the
Pauli coefficients of larger systems that are computation-
ally inaccessible to the SW method. We finish by not-
ing how to dynamically cancel the asymmetry induced
crosstalk in multi-qubit systems. Note that although we
use capacitively shunted flux qubits (CSFQ) [35, 39, 40]
in this work, the overall procedures will be similar for
other types of flux qubits.

A. Single-qubit Pauli coefficients

Here we would like to find a mapping from the multi-
level circuit of a flux qubit to a two-level Pauli descrip-
tion. Flux qubits have a tiltable double-well potential,
where the states in each well are associated with persis-
tent currents that flow in opposite directions. Generally,
the magnitude of the persistent current (PC) is associ-
ated with the strength of the σz term in the Hamiltonian,
and the tunneling amplitude between the two wells is as-
sociated with the strength of the σx term in the Hamilto-

nian. In a typical anneal, flux qubits are initialized with
a low barrier that yields large tunneling between the well
(transverse field), and towards the end of the anneal the
barrier is raised and the double-well is tilted, which sup-
presses the tunneling and give the qubit a net persistent
current (longitudinal field).

In this section we follow the procedure outlined in
Ref. [41] and review it here for completeness. The flux
qubit circuit is controlled via two flux biases denoted ϕx
and ϕz. For a given set of biases, we first find the two
lowest eigenstates of the multi-level circuit Hamiltonian
of the flux qubit, which we use to build the (two-level)
qubit model. In the case of gate-based quantum compu-
tation using transmons [42], the low-energy eigenstates
themselves are used as the computational basis, since
the dispersive readout is an eigenstate measurement in
the energy eigenbasis [43]. However, in QA we typi-
cally perform a PC measurement at the end of each an-
neal [44, 45]. Therefore we need the computational basis
to be the eigenstates of the PC measurement operator.
We write the PC matrix in the low-energy subspace as

I low
p =

(
〈g|Îp|g〉 〈g|Îp|e〉
〈e|Îp|g〉 〈e|Îp|e〉

)
, (3)

where {|g〉, |e〉} are the ground and excited eigenstates of
the circuit Hamiltonian of the flux qubit with eigenen-
ergies {Eg, Ee} respectively, and Îp is the persistent-
current operator for the flux qubit (see Appendix A).

Note that for flux qubits where we associate the qubit
states to circulating currents flowing in opposite direc-
tions, we require the eigenvalues of I low

p to have opposite
signs. If we tilt the qubit potential beyond a certain
point, then the first two eigenstates of the circuit will
both be localized in the same well and the eigenvalues of
I low
p will have the same sign. This puts an upper bound

on the tilt-bias |ϕz|, beyond which the flux circuit cannot
implement a qubit.

Let Vp be the unitary matrix (in the {|g〉, |e〉} basis)
that diagonalizes I low

p and has the eigenstates of I low
p as

its columns. The computational basis {|0〉, |1〉} is then
defined by the eigenstates of the I low

p operator, and in a
slight abuse of notation we express them as:(

|0〉
|1〉

)
= V †p

(
|g〉
|e〉

)
. (4)

The effective Hamiltonian matrix in the computational
basis is then given by

Heff =

(
〈0|Heff |0〉 〈0|Heff |1〉
〈1|Heff |0〉 〈1|Heff |1〉

)
= V †p

(
Eg 0
0 Ee

)
Vp. (5)

We extract the Pauli coefficients by rewriting the effective
Hamiltonian as

Heff = αxσ
x + αyσ

y + αzσ
z + αIσ

I , (6)

where the Pauli operators are given by σI = |0〉〈0| +
|1〉〈1|, σx = |0〉〈1| + |1〉〈0|, σy = −i|0〉〈1| + i|1〉〈0|, and
σz = |0〉〈0| − |1〉〈1|.
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For simplicity, the following two constraints are im-
posed on the effective Hamiltonian by applying addi-
tional unitary transformations to the computational ba-
sis:

1. αy is set to zero.

2. αx is always positive.

After imposing the above constraints, we can write the
single qubit Hamiltonian as a standard transverse field
Ising Hamiltonian of the form

Heff = hxσx + hzσz, (7)

where hx and hz are Pauli coefficients for given qubit
circuit biases of ϕx and ϕz. For each given pair of qubit
circuit biases, we repeat the same procedure to find the
corresponding Pauli coefficients.

B. Multi-qubit Pauli coefficients via SW

In this subsection our goal is to find the Pauli coeffi-
cients for a system of interacting qubits, and we follow the
procedure developed in Ref. [37]. Consider the case of N
flux qubits that are coupled to each other via M tunable
coupler elements, and each circuit element has a given
set of external biases. In Appendix A we show how the
Hamiltonian for such a system consisting of CSFQs and
tunable couplers can be derived, but the following analy-
sis works for other types of flux qubits as well. First, let
us separate the qubit, coupler, and interaction terms as

Htot = H0 +Hint, (8a)

H0 =

N∑
i=1

Hq
i +

M∑
i=1

Hcpl
i , (8b)

where Hq
i is the loaded Hamiltonian of the ith qubit,

Hcpl
i is the loaded Hamiltonian of the ith coupler, H0 is

the non-interacting part of the Hamiltonian, and Hint in-
cludes all the interaction terms between these elements
(see Appendix A). In analogy to the single qubit case, we
would like our qubit subspace to be spanned by the two
lowest eigenstates of each non-interacting (but loaded)
qubit circuit, and since the couplers are designed to adi-
abatically follow the qubits and remain in their ground
state, the qubit subspace will also be spanned by the
ground state of each non-interacting (but loaded) cou-
pler circuit.

However, the interaction term Hint mixes the states
inside the qubit subspaces with the higher excited states
outside of it. Therefore, we employ the SW transforma-
tion [36] to find an effective Hamiltonian that acts on
the qubit subspace. This essentially block-diagonalizes
the total circuit Hamiltonian with respect to the (non-
interacting but loaded) qubit subspace, taking into ac-
count the effect of the interaction on the low-energy sub-
space while preserving the low-energy spectrum of the
circuit.

Formally, let us define the projector onto the low-
energy qubit subspace of the interacting and non-
interacting circuits as

P0 =

2N−1∑
i=0

|E(0)
i 〉〈E

(0)
i |, (9a)

P =

2N−1∑
i=0

|Ei〉〈Ei|, (9b)

where |E(0)
i 〉 is the ith eigenstate of the non-interacting

Hamiltonian H0, and |Ei〉 is the ith eigenstate of the total
Hamiltonian Htot. The SW transformation is then

Usw =
√

(2P0 − I)(2P − I), (10)

and the effective qubit-subspace Hamiltonian is

Hq = P0UswH
totU†swP0, (11)

where Hq acts on the qubit subspace and has the same
2N -dimensional low-energy spectrum as the total circuit
Hamiltonian. We can now calculate the Pauli coefficients
of our system using

h~r =
1

2N
Tr(HqS~r), (12)

where S~r = σr1 ⊗ σr2 ⊗ · · · ⊗ σrN ⊗ Pc consists of single-
qubit Pauli operators of the ith qubit σri , which is calcu-
lated for (loaded) non-interacting qubit circuits as dis-
cussed in Sec. II A. The operator Pc = |gc,1〉〈gc,1| ⊗
|gc,2〉〈gc,2| ⊗ · · · ⊗ |gc,M 〉〈gc,M | consists of the projectors
onto the ground state of the ith (loaded) non-interacting
coupler circuit |gc,i〉〈gc,i|.

C. Multi-qubit Pauli coefficients via pairwise-SW

As discussed in the previous subsection, the Pauli co-
efficients of a system of interacting qubits can be ex-
tracted using the SW method if one can calculate the
low-energy eigenstates of the total interacting circuit. In
Appendix B we provide a method to numerically con-
struct the Hamiltonian of interacting qubits, which uses
the truncated low-energy subspace of circuit subsystems
to reduce the size of the Hilbert space and make the com-
putations tractable. Let us assume that we have a cir-
cuit of N qubits and M couplers, each with a truncation
(i.e., Hilbert space dimension) of q and c respectively.
The joint system then has a Hilbert space dimension of
qNcM , which grows exponentially with the number of
qubits and couplers. Therefore, the computational cost
of calculating the full-SW Pauli coefficients, which re-
quires diagonalizing a matrix of dimension qNcM , scales
exponentially with the number of circuit elements, and
can only be calculated for a few qubits and couplers.

For larger systems, we use an approximation where the
system is divided into pairs of flux qubits that interact
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via a tunable coupler circuit. For each pair, the single
qubit Pauli coefficients are calculated for non-interacting
but loaded qubit circuits via the method of Sec. II A, and
then the coefficients relating to their interaction (two-
qubit Pauli terms) are calculated via SW between those
pairs only, neglecting other parts of the circuit. Let us
again consider a circuit of N qubits and M couplers,
each with a truncation of q and c respectively. Using
this approximate method, the cost of finding Pauli coef-
ficients of single qubits is Nq (each qubit Hamiltonian is
diagonalized separately) which is linear in the number of
qubits, and the cost of performing the full SW between
pairs of qubits is M(q2c) (assuming each coupler inter-
acts with two qubits) which is also linear in the number
of couplers. We call this method pairwise-SW. It gives
acceptable accuracy for the schedules while scaling lin-
early with the number of qubits and couplers in contrast
to the exponential scaling of the full-SW. Note that in-
stead of using the pairwise-SW method to calculate the
coupling strength in this section, one can use the Born-
Oppenheimer method of Ref. [46] that uses a different
approximation that scales linearly with the number of
qubits and couplers as well but is slower by a prefactor.

To illustrate the quality of the approximation achieved
via the pairwise-SW method, Fig. 1 shows the Pauli
schedules of a chain of three coupled CSFQs for a given
set of circuit biases (see Fig. 2), calculated via full-SW
(solid lines) and via pairwise-SW (dot-dashed lines). The
result shows that the pairwise-SW method gives a good
approximation to the full-SW method except at relatively
large coupling strength (|Jij | & 0.7 GHz), where it over-
estimates the magnitude of the Ising coefficients. This is
the tradeoff for scaling only linearly with the number of
qubits and couplers compared to the exponential scaling
of the full-SW method. Dashed and dotted lines show the
schedules reproduced when we try to extract the circuit
biases via the numerical SW and pairwise-SW methods,
respectively (see Fig. 2 and its discussion).

III. FINDING CIRCUIT FLUXES FOR
CUSTOM PAULI SCHEDULES

In Sec. II we discussed how to find Pauli coefficients
for a circuit of qubits and couplers that has a given set
of control fluxes. In this section we address the inverse
problem: how to find appropriate circuit biases that yield
a desired Ising schedule. We do this by providing two
methods for solving this problem, one exact and one ap-
proximate.

The circuit for each qubit and tunable coupler has two
flux biases: ϕx,k and ϕz,k, that thread their small (x)
and large (z) loops respectively (see Appendix A). Note
that the x and z notation here is unrelated to the Pauli
operator indices, and to distinguish the two we use a sub-
script for the loop index and a superscript for the Pauli
operator index. The subscript k indexes circuit elements,
both the qubits and the couplers. Given a desired Pauli
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FIG. 1. Pauli schedules as a function of the normalized an-
nealing time s = t/ta, with ta the total anneal time. Solid
lines use full-SW and dot-dashed lines use pairwise-SW, both
calculated for the original fluxes of Fig. 2. Dashed lines and
dotted lines use full-SW on the fluxes that are extracted for
these schedules via numerical optimization and via pairwise-
SW, respectively. Top three panels show single qubit Pauli
coefficients, and bottom two panels show the two-qubit Pauli
coefficients. The system consists of a chain of three CS-
FQs, where qubits 0 and 1 are coupled ferromagnetically
via a tunable coupler and qubits 1 and 2 are coupled anti-
ferromagnetically. The circuit flux biases change linearly and
are chosen to yield different Pauli coefficient magnitudes for
generality (see Fig. 2). Here and in all subsequent figures all
circuit parameters are from Table I.

schedule, we wish to find appropriate circuit fluxes that
yield that schedule, and we state the problem as

{hxk, hzk, Jkl} 7−→ {ϕx,k, ϕz,k}. (13)

Here we only consider σz⊗σz couplings, since the typical
design of quantum annealing circuits based on flux qubits
can only yield strong interactions of this form and other
types such as σx ⊗ σx will be mostly negligible [46, 47].
Nevertheless, the methods we describe here are applica-
ble, with minor adjustments, to more recent flux qubit
variants [48] and coupling circuits [49] that can imple-
ment other types of interactions such as σx ⊗ σx.
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FIG. 2. Circuit biases that yield the Pauli schedules of Fig. 1.
Solid lines are the original biases that were used to generate
the schedules, dashed lines are the biases that were extracted
using the numerical optimization method of Sec. III A, and
dotted lines are calculated using the pairwise-SW method of
Sec. III B. Left panels show the circuit x-biases, while right
panels show the circuit z-biases, with coupler z-biases always
kept fixed at degeneracy (see main text). The system consists
of a chain of three CSFQs as in Fig. 1. The x-loop junctions
are assumed to be symmetric.

A. Finding circuit fluxes via numerical
optimization

For a given set of circuit biases, we can use the method
of Sec. II B to find the corresponding Pauli coefficients for
those biases. Therefore we can easily compare the result-
ing Pauli coefficients with the ones of our target custom
schedule, and if differences are detected we can tune the
biases iteratively until we achieve our desired schedule.
This is the essence of the method of this section, where
the biases are tuned by an optimization algorithm.

Formally, for any given set of circuit biases we con-
struct a convex cost function that calculates the differ-
ence between our desired Pauli coefficients and the ones
that are calculated for those circuit biases as

C({ϕx,k, ϕz,k}) =
∑
i

(Si − S̃i)2, (14)

where {ϕx,k, ϕz,k} indicates the set of all circuit biases,
the summation is over all the qubits and all the different
coefficients Si ∈ {hxk, hzk, Jkl}, and S̃i is a similar notation
for our desired Pauli coefficients, for which we wish to
find appropriate circuit biases. This cost function is then
minimized in an optimization routine to find the desired
circuit biases. Note that although we construct a convex
cost function, the optimization problem is not convex in
general.

The optimization algorithm is constrained by the
physics of the circuit, which allows us to narrow the
search region. There are three main physical constraints

that we can impose in order to simplify the optimiza-
tion task. The first is to note that the potential of the
flux qubits and couplers is periodic with respect to cir-
cuit biases, and one needs to choose an annealing cell
that fixes the bias ranges such that they belong to a cho-
sen periodicity (see supplementary materials of Ref. [41]).
The second is that the z-bias of qubit circuits cannot be
tuned beyond a certain value; doing so will break the
qubit definition for these circuits (see Sec. II A). There-
fore one needs to place hard constraints on the qubit
z-biases, which significantly narrows the search region.
The third is that the coupler z-biases should all remain
fixed at the coupler degeneracy point and do not need
to be optimized. Tuning the coupler z-bias away from
its degeneracy throws magnetic flux onto its neighbor-
ing qubits, which complicates the experimental control
of the circuit. It amounts to introducing a correlation
between the qubits’ and the couplers’ z-biases (this also
makes numerical optimization more challenging). Ad-
ditionally, keeping the couplers at their degeneracy im-
proves their coherence (by making them first-order insen-
sitive to frequency fluctuations) and therefore improves
the performance of the multi-qubit system, and will not
adversely affect the achievable interaction strength be-
tween the qubits.

There is a large variety of optimization algorithms and
numerical packages that can be utilized for this problem
depending on preference and performance. However, the
computational cost of the optimization problem scales ex-
ponentially with the number of flux qubits and couplers
due to the use of the SW method of Sec. II B for cost func-
tion calculations. Additionally, the cost function must be
calculated multiple times for the optimization algorithm
to converge to a minimum, which further increases the
computational cost, making this method viable only for
small circuits.

B. Finding circuit fluxes via pairwise-SW

Considering the unfavorable computational scaling of
the method of Sec. III A, and motivated by the pairwise-
SW method of Sec. II C, here we provide an approximate
method for finding circuit fluxes that yields desired Pauli
schedules. First, we use a numerical approach similar to
that of Sec. III A to find the circuit biases for isolated but
loaded qubits. With the qubit biases in hand, we then
turn on the couplers and calculate the coupling strengths
using the pairwise-SW method until we reach our desired
coupling strength, for which we save the coupler bias that
yielded the desired strength.

Formally, for each isolated but loaded qubit circuit we
construct a convex cost function that calculates the dif-
ference between the desired single qubit Pauli coefficients
and the ones that are calculated using the method of
Sec. II A as

Cq(ϕx,k, ϕz,k) = (hxk − h̃xk)2 + (hzk − h̃zk)2, (15)
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where ϕx,k and ϕz,k are circuit biases for the kth qubit
only, hxk and hzk are the corresponding single qubit Pauli

coefficients, and h̃xk and h̃zk are the desired single qubit
Pauli coefficients. Similar to Sec. III A, we use numerical
optimization methods to find the circuit biases for all the
qubits.

Next, we consider each coupler circuit and the two
qubits that it couples as a joint system similar to the
pairwise-SW method, and we fix the qubit biases to the
ones that we found earlier using the numerical optimiza-
tion method. Keeping the coupler’s z-bias at its degener-
acy (see Sec. III A), we then turn on the coupler’s x-bias
(e.g., in steps of 100 mΦ0) and for each value of the cou-
pler’s x-bias we calculate the σz⊗σz interaction between
the qubits and continue until we reach our desired inter-
action strength for that pair of qubits, for which we save
the corresponding coupler ϕx. Repeating this procedure
for all the couplers, we can find all the coupler circuit x-
biases that yield our desired two-qubit Pauli coefficients,
while all the coupler z-biases are kept at degeneracy.

Compared to the numerical method of Sec. III A that
is accurate but scales exponentially with the system size,
the pairwise method of this subsection gives approximate
yet sufficiently accurate results, while scaling only lin-
early with the number of qubits and couplers, and can
also be parallelized. Note that once again, instead of
using the pairwise-SW method one can use the Born-
Oppenheimer method of Ref. [46].

To demonstrate the flux extraction methods, we use
the full SW Pauli schedules of Fig. 1 as input to find the
appropriate circuit biases that generates this schedule.
The result is presented in Fig. 2, where solid lines are
the original biases that were used to generate the sched-
ule of Fig. 1, dashed lines are biases calculated using the
numerical optimization method of Sec. III A, and dot-
ted lines are calculated using the pairwise-SW method
of Sec. III B. The dashed lines fully overlap with the
solid lines, which shows that the numerical optimization
method finds all the circuit biases that were originally
used to generate the schedule. The pairwise-SW method
finds circuit biases that are very close to the original ones,
while only scaling linearly with the system size in com-
parison to the exponential scaling of the full-SW method.

To confirm these results, we use the extracted circuit
biases of Fig. 2 and calculate their corresponding sched-
ules via the full-SW method. The result is presented in
Fig. 1, where the dashed lines use the numerically ex-
tracted fluxes, and dotted lines use the fluxes that were
extracted via the pairwise-SW method. As expected, the
numerical method yields the exact same schedule as we
specified, but the pairwise-SW method yields schedules
that have a smaller coupling strength compared to the
desired ones. The reason is that this method generally
overestimates the coupling strength (see the dot-dashed
line of Fig. 1) and therefore when finding the biases it
does not turn on the couplers all the way to the desired
value (see the dotted line for coupler x-bias in Fig. 2).

C. Junction asymmetry correction for circuit fluxes

For circuit elements that exhibit an asymmetry be-
tween the x-loop Josephson junctions, there will be a
rescaling of the currents and a non-linear crosstalk be-
tween the x and z-biases [41], which needs to be taken
into account when we extract circuit fluxes for a given
Pauli schedule. The flux extraction procedures outlined
above can be performed on circuits with asymmetric
junctions, but it is more challenging for two reasons.
First, the junction asymmetry can shift the degeneracy
point of the z-bias by a large amount, which prevents
us from limiting the search region over the z-bias val-
ues. Second, the asymmetry-induced rescaling of cur-
rents and the induced non-linear crosstalk between the
control fluxes manifests as a correlation between the x
and z-biases that ought to be minimized, which compli-
cates the numerical optimization routines. To simplify
matters and avoid these problems, we can extract the
fluxes for symmetric junctions instead, and then modify
the fluxes to account for the junction asymmetry after-
wards [41].

In order to do so, we must account for the two distinct
effects of the junction asymmetry: rescaling of the total
current that goes through the x-loop, and the shift of the
z-bias due to the non-linear crosstalk (see Appendix A).
Let us assume that we have our desired circuit biases
ϕsym
x and ϕsym

z for a circuit element of a symmetric junc-
tion, which can be either a flux qubit or a coupler. Our
goal is to find the circuit biases ϕasym

x and ϕasym
z which

belong to a circuit element of an asymmetric junction
with an asymmetry parameter d = (Ix1−Ix2)/(Ix1+Ix2),
where Ixi is the critical current of the ith junction of the
x-loop. First, we find ϕasym

x via

cos

(
ϕsym
x

2

)
= cos

(
ϕasym
x

2

)√
1 + d2 tan

(
ϕasym
x

2

)
,

(16)
which can numerically be solved for ϕasym

x . This takes
care of the asymmetry-induced rescaling of the current
that goes through the x-loop junctions. Next, we find
the z-bias for the asymmetric junction’s circuit elements
as

ϕasym
z = ϕsym

z − arctan

[
d tan

(
ϕasym
x

2

)]
, (17)

which essentially cancels the effect of the asymmetry-
induced shift of the z-bias. This procedure is then re-
peated for all the individual circuit elements to convert
the symmetric junction’s fluxes to those of the asym-
metric junction. The fluxes calculated in this manner
for asymmetric junctions will then yield the same Pauli
schedules as in the case of their symmetric junction coun-
terparts.

In Fig. 3 we use the circuit biases of Fig. 2 which were
used for symmetric-junction circuit elements, and correct
them for asymmetry using the procedure that we outlined
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FIG. 3. Circuit biases corrected for junction asymmetry.
Solid lines are the circuit biases for symmetric junctions, and
dashed lines are biases corrected for junction asymmetry. The
solid blue lines for the z-bias are invisible (hidden under the
green and orange lines in the top and bottom right panels,
respectively). All circuit elements have an asymmetry pa-
rameter of d = 0.1.

here. Solid lines are the circuit biases for symmetric-
junction elements, and dashed lines show the biases after
applying the asymmetry correction with d = 0.1. Note
that the correction to the x-bias is second order in d� 1
and is typically small, while the correction to the z-bias
can become large.

IV. EXAMPLES OF CUSTOMIZED
ANNEALING SCHEDULES

In the previous section we discussed how to extract cir-
cuit fluxes that yield a desired Pauli schedule, and pro-
vided an exact method that numerically optimizes fluxes
using full-SW, as well as an approximate method using
pairwise-SW that can be utilized for larger circuits. In
this section we utilize these methods and tools to find
circuit biases that yield customized annealing schedules
for three illustrative and informative examples. Our re-
sults are calculated for CSFQ circuits (see Appendix A),
but our tools and methods can be used for other variants
of flux qubits as well.

A. Coherent oscillations

A single flux qubit that evolves under a custom de-
signed annealing schedule can be used to exhibit Landau-
Zener-Stueckelberg oscillations [50] or emulate an (open
system) double-slit experiment [51]. In this case, Pauli
schedules are designed to induce two consecutive diabatic

transitions, where in the first one some of the ground
state population is transferred to the excited state, and
in the next diabatic transition this population recombines
with the ground state, with a different phase. The result
is a wave-like interference pattern in the population of the
ground state as the total anneal time varies, and when
implemented using flux qubits this pattern can be used
as a signature of coherence in the energy eigenbasis and
to study open-system characteristics [51].

In this subsection we find circuit fluxes of a single
CSFQ flux qubit that yields the Gaussian progression
schedule that was proposed in Ref. [51] for this double-
slit experiment. We write the effective qubit Hamiltonian
as

Hq(s) = hx(s)σx + hz(s)σz, (18)

with the Pauli schedules parametrized as:

hx(s) = Ω(s) cos[θ(s)], (19a)

hz(s) = Ω(s) sin[θ(s)]. (19b)

Here s = t/ta is the normalized annealing parameter with
ta the total anneal time as above. The qubit gap is 2Ω(s)
which we fix for simplicity (no s dependence). To gener-
ate the Gaussian progression schedule, we use

θ(s) =
π

8
{2 + erf[α(s+ µ− 1/2)] + erf[α(s− µ− 1/2)]} ,

(20)
where α� 1 and µ < ta/2 set the steepness of the sched-
ule ramps and their positions at the diabatic transitions
respectively. This yields coherent oscillations in the prob-
ability of the ground state as a function of ta, with an
oscillation period of tosc = π/2Ωµ and an adiabatic time
scale of tad = α/Ω [51]. Fig. 4 shows the extracted circuit
fluxes that yield this desired schedule (top left panel),
along with a comparison between the desired and gener-
ated Pauli schedules, showing excellent agreement (mid-
dle left panel), and also showing the oscillation in the
ground state population as a function of the total anneal
time (bottom left panel), calculated by solving the corre-
sponding Schrödinger equation. Here we used numerical
minimization to find optimized circuit biases for a single
qubit.

The Gaussian schedules lead to a rather sharp feature
in the extracted fluxes (top left panel). To alleviate this,
we can consider another schedule, namely a polynomial
reverse-forward schedule of the form

hx(s) = h[1− (2s− 1)p], (21a)

hz(s) = h(1− 2s)p, (21b)

where h is the strength of the fields which yields a max-
imum qubit gap of 2h, and p is the polynomial power of
the schedule. Using numerical simulations of this Pauli
schedule, we find that the oscillations have a period of
tosc ≈ π/h with an adiabatic time scale of tad = πp/2h.
Fig. 4 shows the extracted circuit fluxes for these sched-
ules (top right panel), which change more smoothly than
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the Gaussian progression schedules, along with the ex-
tracted schedules that exactly reproduce our desired form
(middle right panel), and also showing the oscillation in
the ground state population as a function of total an-
neal time (bottom right panel) The smoother flux change
makes this schedule more suitable for experimental im-
plementation, considering the limited sampling rates of
waveform generators. Furthermore, the coherent oscil-
lations of the ground state probability for this schedule
start with an initial amplitude of 1, in comparison to the
Gaussian progression schedule that has an initial ampli-
tude of 0.5; hence the polynomial schedule is expected
to yield a higher contrast, which can be resolved more
easily in experiments (see bottom panels of Fig. 4).

Note that the idea of coherent oscillations can be
straightforwardly extended to a two-qubit system, when
we choose a two-qubit schedule of the form

hx(s)

2
(σx1 + σx2 ) + hz(s)σz1σ

z
2 , (22)

where hx(s) and hz(s) are the same as in the single-
qubit case [e.g., Eq. (19)]. This two-qubit schedule
induces a coherent oscillation between the Bell states
(|00〉 + |11〉)/

√
2 and (|01〉 + |10〉)/

√
2. The dynamics

in this subspace is exactly the same as the dynamics of
the single-qubit case between |0〉 and |1〉.

B. From two-qubit Landau-Zener to Grover

Consider the two-qubit interpolating Hamiltonian

H(γ) = hx(σx1 + σx2 ) + hz(γ σz1 − σz1σz2) (23)

where the interpolation parameter γ(s) increases mono-
tonically from −1 to 1, hx and hz are fixed. We assume
that hx � hz. At the beginning of the anneal when
γ = −1, the ground state of the Hamiltonian is approxi-
mately |00〉; in the middle of anneal when γ = 0 and an
avoided crossing is formed and the ground state is ap-
proximately (|00〉 + |11〉)/

√
2; at the end of the anneal

when γ = 1 the ground state is approximately |11〉. The
eigenvalues of the Hamiltonian (23) at γ = 0 are easily
found to be {

±
√

(hz)2 + 4(hx)2, ±hz
}
, (24)

and the minimum gap, which also occurs at γ = 0, is

∆min =
√

(hz)2 + 4(hx)2 − hz ≈ 2hzλ2, (25)

where we have used λ ≡ hx/hz � 1.
Let us now consider two cases for sweeping the anneal-

ing parameter γ. In the first case, we perform a linear
sweep according to

γLZ(s) = 2s− 1, (26)

where s = t/ta ∈ [0, 1] is the normalized annealing time.
Numerical diagonalization of H(γ) for λ ≡ hx/hz � 1

0.0 0.5 1.0
s = t/ta

0.8

0.9

1.0

x/2

0.0

0.2

0.4

0.6

z/2
 (×

10
3 )

0.0 0.5 1.0
s = t/ta

0.80
0.85
0.90
0.95
1.00

x/2

0.0

0.1

0.2

0.3

z/2
 (×

10
3 )

0.0 0.5 1.0
s = t/ta

0.0

0.1

0.2

Isi
ng

 c
oe

ffi
cie

nt
 (G

Hz
)

hx

hz

0.0 0.5 1.0
s = t/ta

0.00

0.05

0.10

0.15

Isi
ng

 c
oe

ffi
cie

nt
 (G

Hz
)

hx

hz

0 20 40
ta (ns)

0.00

0.25

0.50

0.75

1.00

gr
ou

nd
 st

at
e 

po
pu

la
tio

n

0 20 40
ta (ns)

0.00

0.25

0.50

0.75

1.00

gr
ou

nd
 st

at
e 

po
pu

la
tio

n

FIG. 4. Extracted fluxes and Pauli schedules for coherent os-
cillations. The left and right columns belong to the Gaus-
sian progression and polynomial reverse-forward schedules,
respectively. The top row shows extracted fluxes for the
Gaussian progression schedule (left) and polynomial reverse-
forward schedule (right). For the top panels, the left axis
(blue line and label) shows the x-bias while the right axis
(red line and label) shows the z-bias. The middle row shows
extracted Pauli schedules for the Gaussian progression sched-
ule (left) and polynomial reverse-forward schedule (right).
For the middle panels, solid lines show the desired sched-
ules and dashed lines show the schedules reproduced using
the extracted fluxes of the top row. The bottom row shows
the population of the ground state at the end of the anneal
as a function of the total anneal time calculated from the
qubit model Schrödinger equation, for the Gaussian progres-
sion schedule (left) and for the polynomial reverse-forward
schedule (right). For the Gaussian progression schedule we
use Ω/2π = 250 MHz, α = 30, and µ = 1/3. For the polyno-
mial reverse-forward schedule we use h/2π = 167 MHz (such
that the oscillation period for both schedules becomes 3 ns)
and p = 8.

shows that the ground state gap varies approximately
linearly with γ (decreasing for γ ∈ [−1, 0), increasing for
γ ∈ (0, 1], see Fig. 5). In this sense, a linear sweep of the
annealing parameter γ from −1 to 1 yields a two-qubit
generalization of the Landau-Zener (LZ) problem [52, 53].

In the second case we use a ‘Grover-like’ [19] or brachis-
tochrone [54] schedule that slows down near the avoided
crossing:

γG(s) =
1√

λ−4 − 1
tan

[
(2s− 1) tan−1

(√
λ−4 − 1

)]
.

(27)
While this schedule is not the precise local-adiabatic
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schedule nor the brachistochrone schedule for our an-
nealing protocol, its analytical form is convenient and
it serves the purpose of demonstrating a quadratic im-
provement in quantum annealing performance. Numeri-
cal solution of the time-dependent Schrödinger equation
for these two different schedules shows that in the lin-
ear schedule case, one needs an anneal time ta ∝ λ−4 to
keep the system in its ground state, while the Grover-like
schedule reaches the adiabatic limit with a quadratically
shorter anneal time of ta ∝ λ−2 (see Appendix. C). This
example directly illustrates that a customized annealing
schedule can result in improved quantum annealing per-
formance.

Using the methods and tool discussed in Sec. III, we
can extract appropriate circuit fluxes that yield either the
schedule with the linear sweep or the one with the Grover
sweep, which are shown in Fig. 5. The top four panels
show the customized schedule and its spectrum for a lin-
ear sweep, and the bottom four panels show the same for
the Grover sweep. Solid lines show the desired schedules,
dashed lines show the schedules that are reconstructed
from circuit biases that were found using the numeri-
cal optimization method of Sec. III A, while dotted lines
show the schedules that were found using the pairwise-
SW method of Sec. III B. Fig. 5 demonstrates that our
methods can construct the desired schedules to good ac-
curacy, and the circuit spectrum clearly shows that the
Grover sweep slows down near the minimum gap point
in the middle of anneal. Note that for an experimental
implementation of this problem, one can easily tune the
size of the minimum gap by tuning λ via our customized
schedules, which allows for an exploration of the adia-
batic time-scale of this problem for different gap sizes
(see Appendix C).

It is worth noting that this problem can be extended
to a chain of n qubits as

H(γ) = hx
n∑
l=1

σxl + hzγ σz1 − hz
n−1∑
l=1

σzl σ
z
l+1. (28)

In this case the gap scales with the number of qubits as
∆min ∝ λn, providing a convenient way to investigate an-
nealing dynamics in a small gap setting. Similar to the
two-qubit case, the annealing parameter can be swept
linearly for an adiabatic anneal time that scales as λ−2n,
or the anneal can slow down near the minimum gap ac-
cording to the Grover schedule for an adiabatic anneal
time that scales as λ−n.

C. Diabatic Quantum Annealing

Quantum annealing aims to prepare a state that has a
large overlap with the ground state of the Ising Hamil-
tonian of interest at the end of the anneal. This can be
achieved by adiabatically following the ground state of
the system throughout the anneal, but can become too
slow for problems with a small gap. An alternative is
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FIG. 5. Pauli schedules for the two-qubit LZ problem. Solid
lines show the desired schedules, dashed lines show the sched-
ule reconstructed from circuit biases that were found using
the numerical optimization method, and dotted lines show
the schedules for circuit biases found using the pairwise-SW
method. Note the different scales of the different panels; the
error of the pairwise-SW method is a few percent in all cases.
The top four panels use a linear sweep, while the bottom four
panels use the Grover sweep. The circuit spectrum for the
first six eigenenergies is plotted for each schedule, showing
that the Grover sweep slows down near the minimum gap.
The system consists of two CSFQs coupled ferromagnetically
via a tunable coupler. Here we use hz/2π = 0.8 GHz, and
λ = 0.2.

to allow for diabatic transitions to higher excited states
(and back to the ground state of the final Hamiltonian),
which can be a more promising route to quantum en-
hancement [16].

Consider the two-qubit interpolating Hamiltonian

H(s) = γd1(s)hx1σ
x
1 + γd2(s)hx2σ

x
2

+ γp(s)[h
z
1σ

z
1 + hz2σ

z
2 + Jσz1σ

z
2 ] (29)

where h
x/z
l and J are fixed Pauli coefficients, and γp(s),

γd1(s), and γd2(s) are sweep-parameters in the range
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[0, 1] for the problem and driver Hamiltonians respec-
tively. Our goal is to construct a customized schedule
that has two separated small gaps between the ground
and the first excited state. This diabatic quantum an-
nealing (DQA) scheme enables the ground state ampli-
tude to be transferred to the excited state via a diabatic
transition at the first small gap, after which it diabati-
cally transfers back to the ground state. Similar to the
case in Sec. IV A, this scheme leads to multi-qubit coher-
ent oscillations (see Appendix C).

To implement the small gaps, the annealing schedule
of this problem is divided into two parts. First, for s ∈
[0, s1], we keep the problem Hamiltonian turned off by
setting γp(s) = 0, and set the initial transverse fields so
that 0 < hx1 < hx2 . We then decrease the field on the
first qubit to some final small value, while keeping the
transverse field of the second qubit fixed. Formally we
use

0 ≤ s ≤ s1 :


γd1(s) =

(
∆

(1)
min

2hx
1
− 1

)
s
s1

+ 1

γd2(s) = 1

γp(s) = 0

(30)

where ∆
(1)
min is the first small gap in this problem occur-

ring at s = s1, since for this initial part of the anneal the
gap is always 2γd1(s)hx1 .

Second, for s ∈ (s1, 1], we gradually turn on the prob-
lem Hamiltonian to its final value, and at the same time
we gradually turn off the transverse fields completely. For
the problem Hamiltonian we assume hz1 < J < hz2, and
for the schedules we use

s1 < s ≤ 1 :


γd1(s) =

∆
(1)
min

2hx
1

s−1
s1−1

γd2(s) = s−1
s1−1

γp(s) = s−s1
1−s1

(31)

Since the transverse field of the first qubit is small during
this part of the anneal, we can approximate the gap of
the system as

∆(2)(s) ≈
√

[∆̃(s)]2 + [2γd1(s)hx1 ]2, (32)

where

∆̃(s) =
√
γ2
p(s)(hz2 + J)2 + [γd2(s)hx2 ]2

−
√
γ2
p(s)(hz2 − J)2 + [γd2(s)hx2 ]2

− 2γp(s)h
z
1 (33)

is the gap of the system in the absence of hx1 . If hz1 < J, hz2
(as we assumed earlier) then there exists s∗ ∈ (s1, 1] for

which ∆̃(s∗) = 0, and therefore the system reaches its

second small gap of ∆
(2)
min = ∆(2)(s∗) ≈ 2γd1(s∗)hx1 for

this part of the anneal.
We have extracted the appropriate circuit fluxes that

yield this customized DQA schedule, and the result is
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FIG. 6. Pauli schedules for the DQA problem. Solid lines
show the desired schedules, dashed lines show the sched-
ule reconstructed from circuit biases that were found using
the numerical optimization method, and dotted lines show
the schedules for circuit biases found using the pairwise-SW
method. The circuit spectrum for the first four eigenener-
gies are drawn in the bottom right panel, and the location
of the two minimum gaps are marked with arrows. The sys-
tem consists of two CSFQs coupled anti-ferromagnetically via

a tunable coupler. Here we use s1 = 0.1, ∆
(1)
min/2π = 50

MHz, hx
1/2π = 0.5 GHz, hx

2/2π = 1 GHz, hz
1/2π = 0.5 GHz,

hz
2/2π = 0.8 GHz, J/2π = 0.7 GHz.

presented in Fig. 6. Solid lines show the desired sched-
ules, dashed lines show the schedules reconstructed from
circuit biases that were found using the numerical op-
timization method of Sec. III A, and dotted lines show
the schedules found using the pairwise-SW method of
Sec. III B. Fig. 6 demonstrates that the desired sched-
ules can be accurately implemented, and the spectrum
of the circuit during this anneal clearly shows the two
small gaps that we intended to implement (marked with
arrows).

V. CONCLUSION

Progress in quantum annealing relies on the develop-
ment of scalable methods and tools to translate between
the effective Pauli-Hamiltonian of qubits and the circuit
model of the underlying device. Such methods enable
the utilization of advanced control capabilities that are
being developed for the next generation of flux qubits,
such as CSFQs, which go well beyond traditional trans-
verse field Ising model interpolation with more limited
and less customizable annealing schedule control.

In this work we have presented methods for system-
atically finding the effective qubit model of coupled su-
perconducting flux qubits via the Schrieffer-Wolff (SW)
transformation. Among these is a pairwise approxima-
tion that scales linearly with the system size compared
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to the exponential scaling of the exact, full-SW method.
Using this pairwise-SW approximation we provided scal-
able methods for finding circuit control biases that can
implement arbitrary annealing schedules, accounting for
the physical limitations of the device. Lastly, we demon-
strated our methodology by finding customized anneal-
ing schedules for example cases of interest, that showcase
how the ability to custom-design annealing schedules can
be used to investigate as well as improve quantum anneal-
ing performance.

Our results provide the necessary two-way link between
abstract quantum annealing protocols, formulated at the
level of effective Pauli-Hamiltonians, and the circuit con-
trol biases that need to be tuned on an actual quantum
annealing device. Our methods are scalable and can be
used for systems with a large number of qubit and coupler
circuits, while being reasonably accurate for most imple-
mentations, at least on the scale of few-qubit circuits we
were able to test. We have made the codes and tools that
we developed for this work publicly available [38] so they
can be used by other researchers for designing their own
customized annealing schedules.
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Appendix A: Derivation of circuit Hamiltonians

In this appendix we provide a derivation of the cir-
cuit Hamiltonian for the capacitively shunted flux qubit
(CSFQ) [39], the tunable coupler element, and of a cou-
pled system of such qubits. Fig. 7 shows the schematic
for a typical unit cell that includes two CSFQs cou-
pled to a tunable coupler via their mutual inductance.
Our methodology follows standard superconducting cir-
cuit network theory [55–58].

1. Hamiltonian of a CSFQ

In this section we derive the Hamiltonian for the CSFQ
circuit of Fig. 7. We identify 3 nodes for this circuit,
which are marked with filled red circles in Fig. 7. Let us
define the column vectors of circuit nodes as

~ϕ =

ϕ̂1

ϕ̂2

ϕ̂3

 , ~n =

n̂1

n̂2

n̂3

 (A1)

where ϕ̂i and n̂i are superconducting phase and num-
ber of Cooper pairs operators for node i, satisfying the
following commutation relation

[ϕ̂k, n̂l] = iδkl. (A2)

The phase operator ϕ̂ relates to the flux operator via

ϕ̂ = 2π Φ̂
Φ0

; the number of Cooper pairs operator n̂ relates

to the charge operator via n̂ = Q̂
2e . Here Φ0 is the flux

quantum and e is the electron charge.
We start by writing the capacitance matrix of the cir-

cuit. Each diagonal element of this matrix is the sum
of all the capacitances that are connected to each node,
and the off-diagonal elements are minus the sum of all
the capacitances between pairs of nodes. The capaci-
tance matrix can then be written as

C =

 Cx1 + Cx2 −Cx1 − Cx2 0
−Cx1 − Cx2 Cx1 + Cx2 + Cz + Csh −Cz

0 −Cz Cz + Cz


=

 2αCz −2αCz 0
−2αCz Csh + (1 + 2α)Cz −Cz

0 −Cz 2Cz

 , (A3)

where Cxi is the junction capacitance for ith junction of
the x-loop, Cz is the junction capacitance of each of the
z-loop junctions, and Csh is the shunt capacitance. In
the second equality we have used the relation between
the large z-loop and small x-loop junctions of the CSFQ
as

Cx1 + Cx2

2
= αCz. (A4)

The inverse capacitance matrix is then

C−1 =


2

2Csh+Cz
+ 1

2αCz

2
2Csh+Cz

1
2Csh+Cz

2
2Csh+Cz

2
2Csh+Cz

1
2Csh+Cz

1
2Csh+Cz

1
2Csh+Cz

Csh+Cz

Cz(2Csh+Cz)

 ,

(A5)
which we use to write the capacitive part of the Hamil-
tonian

Hq
C =

1

2
(2e)2 ~nT ·C−1 · ~n, (A6)

which, after some algebra, becomes

Hq
C =

(2e)2

2

[ n̂2
1

2αCz
+

n̂2
3

Cz(2Csh + Cz)/Csh

+
(n̂1 + n̂2)2

2Csh + Cz
+

(n̂1 + n̂2 + n̂3)2

2Csh + Cz

]
. (A7)
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FIG. 7. Circuit schematic for a pair of qubits coupled via a tunable coupler. The 4-junction CSFQ and the coupler are
controlled via bias lines that thread x and z fluxes into their corresponding loops. Fluxes are applied onto their corresponding
junctions and marked with green arrows. Circuit elements such as capacitance and critical currents of junctions are shown with
blue letters, and circuit nodes used for raw derivation of Hamiltonians are marked with red circles and numbered. The qubits
interact with the coupler via their mutual inductance.

Next, we write the inverse inductance matrix of the
CSFQ circuit, whose diagonal elements are the sum of the
inverse inductances connected to each node, and whose
off-diagonal elements are minus the total inverse induc-
tance between pairs of nodes. The inverse inductance
matrix of the CSFQ can be written as

L−1 =

 1
L 0 0
0 0 0
0 0 0

 , (A8)

which we use to write the inductive part of the circuit
Hamiltonian as

Hq
L =

1

2

(Φ0

2π

)2
~ϕT · L−1 · ~ϕ, (A9)

yielding

Hq
L =

1

2

(Φ0

2π

)2 ϕ̂2
1

L
. (A10)

Finally, we write the Josephson part of the Hamilto-
nian, where we have chosen a gauge that splits (sym-
metrizes) the control fluxes over both of its junctions to
get

Hq
J = −Φ0

2π

[
Iz cos(−ϕ̂3 − ϕz/2) + Iz cos(ϕ̂3 − ϕ̂2 − ϕz/2)

+ Ix1 cos(ϕ̂2 − ϕ̂1 − ϕx/2)

+ Ix2 cos(ϕ̂2 − ϕ̂1 + ϕx/2)
]
. (A11)

We can further simplify these terms by using the relation
between the critical currents of large and small junctions

Ix1 + Ix2

2
= αIz, (A12)

and defining the asymmetry parameter d and the asym-
metry phase ϕd as

d ≡ Ix1 − Ix2

Ix1 + Ix2
, (A13a)

tan(ϕd) ≡ d tan
(ϕx

2

)
, (A13b)

to get

Hq
J = −Φ0

2π
Iz

[
cos(ϕ̂3 + ϕz/2) + cos(ϕ̂3 − ϕ̂2 − ϕz/2)

+ 2α cos
(ϕx

2

)
cos(ϕ̂2 − ϕ̂1)

+ 2αd sin
(ϕx

2

)
sin(ϕ̂2 − ϕ̂1)

]
, (A14)

or more compactly as

Hq
J =− Φ0

2π
Iz

[
cos(ϕ̂3 + ϕz/2) + cos(ϕ̂3 − ϕ̂2 − ϕz/2)

+ 2α cos
(ϕx

2

)√
1 + tan2(ϕd) cos(ϕ̂2 − ϕ̂1 − ϕd)

]
.

(A15)

This form shows that the junction asymmetry has two
distinct effects on the qubit: it rescales the total current

that goes through the x-junctions by
√

1 + tan2(ϕd), and
also shifts the qubit z-bias by ϕd. The total Hamiltonian
of the CSFQ is the sum of the capacitive, inductive, and
junction parts:

Hq = Hq
C +Hq

L +Hq
J . (A16)

Finally, let us also define the persistent-current oper-
ator for the qubit, which is used in defining the qubit’s
Pauli coefficients and PC measurement. The PC opera-
tor is defined as Îp = −∂U/∂Φz, where U = Hq

L +Hq
J is

the potential energy of the CSFQ and Φz = (Φ0/2π)ϕz
is the magnetic flux of the tilt-bias. Therefore we have

Îp = −Iz
2

[sin(ϕ̂3 + ϕz/2)− sin(ϕ̂3 − ϕ̂2 − ϕz/2)] .

(A17)
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2. Hamiltonian of a Coupler

For the coupler circuit of Fig. 7, there is only one node,
and for the capacitive and inductive part of the Hamil-
tonian we have

Hcpl
C =

(2e)2

2

n̂2
1

CΣ
, (A18a)

Hcpl
L =

1

2

(Φ0

2π

)2 ϕ̂2
1

L
, (A18b)

where CΣ = Cx1 +Cx2 is the sum of the junction capac-
itances.

For the Josephson term, we note that since there
is a permutation symmetry between the two SQUID
junctions, the z-flux should be applied to both, and it
should be applied in the same direction. Put differ-
ently, we can replace the two SQUID junctions with
an equivalent junction that has a persistent current of

(Ix1 + Ix2) cos
(
ϕx

2

)√
1 + tan2(ϕd), and then apply the

z-bias to this single junction, and account for an asym-
metry induced phase shift of ϕd. Therefore the Josephson
terms are

Hcpl
J = −Φ0

2π

[
Ix1 cos(ϕ̂1 − ϕz + ϕx/2)

+ Ix2 cos(ϕ̂1 − ϕz − ϕx/2)
]
, (A19)

which can be rewritten as

Hcpl
J = −Φ0

2π
IΣ

[
cos
(ϕx

2

)
cos(ϕ̂1 − ϕz)

+ d sin
(ϕx

2

)
sin(ϕ̂1 − ϕz)

]
, (A20)

or further simplified as

Hcpl
J = −Φ0

2π
IΣ cos

(ϕx
2

)√
1 + tan2(ϕd) cos(ϕ̂1−ϕz−ϕd),

(A21)
where IΣ = Ix1 + Ix2 is the sum of the junction criti-
cal currents, and where similarly to the CSFQ we have
defined the asymmetry parameter and the phase shift as

d =
Ix1 − Ix2

Ix1 + Ix2
, (A22a)

tan(ϕd) = d tan
(ϕx

2

)
. (A22b)

Note that the junction asymmetry has two distinct ef-
fects on the coupler: it rescales the total current that

goes through the x-junctions by
√

1 + tan2(ϕd), and also
shifts the coupler z-bias by ϕd. The total Hamiltonian
of the coupler is the sum of all these terms:

Hcpl = Hcpl
C +Hcpl

L +Hcpl
J . (A23)

3. Hamiltonian of two coupled CSFQs

We now write the Hamiltonian of the joint system of
two CSFQs and the coupler in Fig. 7. We use the same

notation as before, but add superscripts of q0, q1, and
cpl to distinguish between the subsystems. The total
capacitance matrix of the circuit is the outer product of
the capacitance matrix of each subsystem, and because
there is no capacitive coupling between the circuits, the
inverse capacitance matrix remains the same as before for
each subsystem. Therefore from Eqs. (A7) and (A18a)
for the capacitive part of the Hamiltonian we have

Htot
C = Hq0

C +Hcpl
C +Hq1

C . (A24)

The Josephson part of the joint system is also simply the
sum of the Josephson terms of each subsystem:

Htot
J = Hq0

J +Hcpl
J +Hq1

J . (A25)

In order to take into account the mutual inductive in-
teraction, we need to build a new inductance matrix with
the inductances of all branches participating in the in-
teraction (in our case the three branches containing L’s).
The diagonal elements of the branch inductance matrix
are inductances of each branch, and the off-diagonal el-
ements are minus the mutual between those branches,
which in our case is

Lb =

 Lq0 −M0 0
−M0 Lcpl −M1

0 −M1 Lq1

 . (A26)

Note again that this matrix is written for the branch
fluxes/phases (in contrast with the node fluxes/phases).
We can use this inductance matrix to write the inductive
part of the Hamiltonian as

Htot
L =

1

2

(Φ0

2π

)2
~ϕTb · L−1

b · ~ϕb, (A27)

where

~ϕb =

ϕ̂b1ϕ̂b2
ϕ̂b3

 =

 ϕ̂q0
1 − 0

ϕ̂cpl
1 − 0

ϕ̂q1
1 − 0

 , (A28)

is the column vector of branch fluxes, and in the second
equality we have rewritten it in terms of the node fluxes
(the other node is grounded, hence the zero terms).

The inverse inductance matrix can be calculated as

L−1
b =

1

Lq0Lq1L̃cpl

×

Lq0Lcpl −M2
1 Lq1M0 M0M1

Lq1M0 Lq0Lq1 Lq0M1

M0M1 Lq0M1 Lq0Lcpl −M2
0

 ,

(A29)

where L̃cpl = Lcpl − M2
0 /L

q0 − M2
1 /L

q1 is the loaded
coupler inductance (see below). We can then write the
inductive part of the Hamiltonian of the joint system
using Eq. (A27), and we also separate the resulting terms
into two parts as Htot

L = Htot
L̃

+Hint. The first part Htot
L̃
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is the loaded inductive energy of the system (indicated
by a tilde on L)

Htot
L̃

=
1

2

(Φ0

2π

)2[Lq1Lcpl −M2
1

Lq0Lq1L̃cpl
(ϕ̂q0

1 )2

+
1

L̃cpl
(ϕ̂cpl

1 )2

+
Lq0Lcpl −M2

0

Lq0Lq1L̃cpl
(ϕ̂q1

1 )2
]
, (A30)

which is simply the sum of inductive energies of each
subsystem, except each inductance is renormalized due to
the interaction between the circuits. These renormalized
inductances are called loaded inductance. The second
part, Hint, includes the interaction terms:

Hint =
1

2

(Φ0

2π

)2[ 2M0M1

Lq0Lq1L̃cpl
ϕ̂q0

1 ϕ̂
q1
1

+
2M0

Lq0L̃cpl
ϕ̂q0

1 ϕ̂
cpl
1

+
2M1

Lq1L̃cpl
ϕ̂q1

1 ϕ̂
cpl
1

]
. (A31)

Let us note that the interaction and the loaded inductive
terms here match the ones found in Eq. (5) of Ref. [46], al-
beit derived using a different approach. The total Hamil-
tonian of the joint system is then:

Htot = Htot
C +Htot

L̃
+Htot

J +Hint. (A32)

4. Hamiltonian of larger systems of qubits and
couplers

So far we have shown how to write the Hamiltonian
for a joint system of two CSFQs coupled via a tunable
coupler. Writing the Hamiltonian for a larger system of
qubits and couplers, arranged on an arbitrary grid and
interacting via mutual couplers, is very similar. The ca-
pacitive and Josephson parts of the Hamiltonian are sim-
ply the sums of the respective parts of all the subsystems

Htot
C =

∑
k

Hk
C , (A33)

Htot
J =

∑
k

Hk
J . (A34)

For the inductive part, we have to write the branch
inductance matrix of the whole circuit, where the diago-
nal elements are inductances of each subsystem, and the
off-diagonal elements are, as usual, minus the mutual be-
tween these subsystems. After calculating the inverse of
the branch inductance matrix L−1

b , we can write the in-
teraction part of the Hamiltonian as

Hint =
1

2

(Φ0

2π

)2∑
k 6=l

2ϕ̂k1(L−1
b )klϕ̂

l
1, (A35)

CSFQ Coupler

Iz = 230 nA IΣ = 565 nA

Csh = 50 fF CΣ = 11 fF

L = 480 pH L = 580 pH

M = 65 pH M = 65 pH

Cz = 4.4 fF

α = 0.4

TABLE I. Circuit parameters for CSFQ and coupler used in
the numerical simulations of this work. Values correspond to
the design parameters for the Indus generation of the DARPA
Quantum Annealing Feasibility Study (QAFS) devices de-
signed by Northrop Grumman and fabricated at MIT Lincoln
Labs. The junction asymmetry d is assumed to be zero unless
otherwise stated.

where (L−1
b )kl are matrix elements of the inverse branch

inductance matrix and ϕ̂k1 is the phase operator at node
1 for the kth subsystem. Finally, we write the loaded
inductive energy of the whole system as

Htot
L̃

=
1

2

(Φ0

2π

)2∑
k

(L−1
b )kk

(
ϕ̂k1
)2
, (A36)

where 1/(L−1
b )kk is the loaded inductance of the kth sub-

system. The total Hamiltonian of the joint system is
simply the sum of all these terms

Htot = Htot
C +Htot

L̃
+Htot

J +Hint. (A37)

Appendix B: Numerical simulation of circuit
Hamiltonians

In this appendix we discuss how the Hamiltonians of
the circuits are constructed for numerical simulations.
We start by discussing the simulation methods for a
CSFQ and a coupler, and then we discuss how the Hamil-
tonian for larger systems of multiple qubits and couplers
are constructed.

For all the figures of this paper we use the circuit pa-
rameters of Table I for numerical simulations. The qubit
and coupler junction asymmetry is assumed to be zero
(unless stated otherwise) because its effect on the Pauli
schedules can be considered separately, as discussed in
Sec. III C of the main text. Note that for ferromagnetic
interactions (Jij < 0) mutuals between qubits and cou-
pler are both positive, while for anti-ferromagnetic inter-
actions (Jij > 0) the mutuals have opposite signs.

1. Hamiltonian of CSFQ and coupler circuits

To construct the Hamiltonian of the circuits, each op-
erator such as the node phase ϕk and the node charge
nk has to be numerically represented in a chosen basis.
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Formally these operators act on an infinite dimensional
Hilbert space, but for our purposes they need to be rep-
resented in a truncated Hilbert space with a cutoff, so as
to be able to fit them in computer memory. The choice
of basis for representing the operators is particularly im-
portant since it has a stark effect on the size of the cutoff
for the Hilbert space, and can also simplify the task of
writing down various Hamiltonian terms. For example,
the simplest, and yet the least efficient choice, would be
to discretize the phase variable ϕk with a step size of δϕk,
which leads to a Hilbert space of dimension 2π/δϕk and
matrices of size (2π/δϕk) × (2π/δϕk). Accuracy is then
inversely proportional to step size, which typically leads
to unmanageably large Hilbert spaces. Additionally, with
this choice one has to enforce periodicity by hand, which
requires extra work. Instead of this choice we utilize the
specific form of the Hamiltonian terms and use basis rep-
resentations that require smaller cutoffs and simplify the
representations, similar to the approach of Ref. [58]. We
note that such truncation approximations are formally
projections into lower-dimensional subspaces; this intro-
duces errors which can be formally bounded using tech-
niques such as presented in Ref. [18]. Our approach in
this work is practical, and instead of using formal bounds
we ensure that our truncations yield numerical conver-
gence for a given number of low-energy eigenstates of
interest.

For node variables of Hamiltonian that show up as
a quantum harmonic oscillator with the generic form
EC n̂

2 +ELϕ̂
2, we simply use the harmonic oscillator ba-

sis for representation. This will be our choice of basis
for node variable 1 of the CSFQ, and for the node vari-
able 1 (the only node) of the coupler circuit. Specifically,
we represent the lowering (annihilation) operator in the
basis of eigenstates of a quantum harmonic oscillator as

â =



0
√

1 0 . . . 0

0 0
√

2 . . . 0

0 0 0
. . .

...
...

...
...

. . .
√
nmax − 1

0 0 0 . . . 0


, (B1)

which is a matrix of size nmax × nmax, where nmax is the
Hilbert space cutoff dimension. We can then represent
that part of our circuit Hamiltonian in this basis as

EC n̂
2 + ELϕ̂

2 = 2
√
ECEL(â†â+ 1/2). (B2)

In other parts of the circuit Hamiltonian where these
node variables appear but cannot be grouped into har-
monic oscillator terms as in Eq. (B2), we simply use the
well-known quantum harmonic oscillator relations

ϕ̂ =

(
EC
EL

) 1
4 â+ â†√

2
, (B3a)

n̂ =

(
EC
EL

)− 1
4 â− â†√

2i
, (B3b)

to represent those node variables.
For the node variables where the phase ϕ̂k only shows

up in periodic trigonometric functions, as in node vari-
ables 2 and 3 of the CSFQ circuit, the natural choice of
representation is the charge number (Cooper pair) basis.
This is because for any phase operator ϕ̂:

cos(mϕ̂) =
D̂(m) + D̂†(m)

2
, (B4)

where

D̂(m) = D̂†(−m) = eimϕ̂, (B5)

is the operator that displaces the charge by m. Note that
since the displacement operator of Eq. (B5) changes the
number of Cooper pairs, the m parameter can only take
integer values. Eq. (B4) has an intuitive interpretation
for Josephson junctions whose potential in the phase ba-
sis is cos(ϕ̂): in the charge basis this corresponds to an
average of the tunneling of Cooper pairs between oppos-
ing sides of the junction.

The charge number displacement operator can be rep-
resented in the charge number basis as

D̂(m) =

+qmax∑
−qmax

|n+m〉〈n|, (B6)

which is represented by a square matrix with 1s on the
mth lower off-diagonal and zeros everywhere else. Here
qmax is the cutoff for the number of charges (Cooper
pairs) used for numerical calculations, which yields a
Hilbert space with dimension 2qmax + 1.

The charge operator itself is a diagonal matrix in this
basis, which can be written as

n̂ =

+qmax∑
−qmax

n|n〉〈n|. (B7)

When an external flux bias of ϕext is present inside cosine
(or sine) terms, the corresponding Hamiltonian terms can
be represented in the charge basis as:

cos(mϕ̂+ ϕext) =
eiϕextD̂(m) + e−iϕextD̂†(m)

2
. (B8)

Hamiltonian terms where the cosine term includes phases
of two node variables can be represented in the charge
basis as:

cos(mkϕ̂k +mlϕ̂l + ϕext) =

eiϕextD̂k(mk)⊗ D̂l(ml) + e−iϕextD̂†k(mk)⊗ D̂†l (ml)

2
.

(B9)

Finally, the circuit Hamiltonian for each element is
constructed by choosing the appropriate basis represen-
tation for each node variable and then constructing the
joint basis via a tensor product between the different
bases. For example, in this manner the CSFQ circuit
will have a Hilbert space that consists of tensor products
between one harmonic oscillator basis (for node 1) and
two charge number bases (nodes 2 and 3).
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2. Hamiltonian of multi-qubit circuits

When constructing the joint Hamiltonian of interact-
ing circuits, we cannot simply use the joint Hilbert space
of the tensor product of each circuit element, since the
exponential growth in even the truncated Hilbert space
dimension outpaces computer memory. Instead, we di-
agonalize each subsystem (individual qubits or couplers)
Hamiltonian individually and represent it in its eigenba-
sis, then truncate the Hilbert space of the diagonalized
subsystem and only keep a few low-energy eigenstates
of each subsystem. We then represent the interaction
terms in this low-energy subspace by rotating the inter-
action Hamiltonian onto the truncated low-energy sub-
space of the subsystems. This allows us to represent
the joint Hamiltonian of the system in a much smaller
Hilbert space. In choosing the truncation parameters we
are guided by both our truncation convergence criterion
and the amount of available computer memory.

Formally, consider a system of interacting qubits and
couplers where the loaded Hamiltonian of each subsystem
is Hk, which is represented in a Hilbert space of dimen-
sion dk. For a given set of circuit flux biases, let Uk be the
unitary transformation that diagonalizes each subsystem
Hamiltonian:

Dk = U†kHkUk, (B10)

where Dk is a dk × dk diagonal Hamiltonian with the
eigenvalues of Hk on its diagonal. We intend to truncate
each subsystem Hamiltonian and only keep its first Tk
eigenstates and eigenvalues. Note that finding the eigen-
states and eigenvalues of each subsystem is not compu-
tationally hard, because each of these circuits are rep-
resented by a relatively small matrix that can be diag-
onalized quickly, and the procedure can be parallelized
over different subsystems. Therefore we replace each sub-
system Hamiltonian with D̄k, a diagonal matrix of size
Tk × Tk that has the first Tk eigenvalues of Hk on its
diagonal. Henceforth we use a bar to indicate operators
that act on the truncated space.

To write the interaction term, let us introduce the
isometry Ūk, which has the first Tk orthonormal eigen-
states of Hk as its columns. Note that these eigenstates
are represented in the fixed basis of the subsystem cir-
cuits which has dimension dk. This isometry matrix is
therefore of size dk × Tk, and has the property that

Ū†kŪk = ĪTk
, (B11)

where ĪTk
is the Tk-dimensional identity matrix. This

isometry can be used to write the truncated diagonal
subsystem Hamiltonian

D̄k = Ū†kHkŪk. (B12)

Next, we use the isometries {D̄k} to rotate and trun-
cate the interaction terms between the subsystems onto
their low-energy eigenspaces:

H̄int = Ū†allHintŪall, (B13)

where

Ūall =
⊗
k

Ūk. (B14)

Note that for our system, due to the form of the inter-
action terms in Eq. (A35), one only needs to rotate a
pair of phase operators using their isometries and then
use the tensor product with identity for the other subsys-
tems. For most interacting circuits one does not have to
calculate Ūall directly, and can instead only calculate the
rotated and truncated circuit operators that participate
in the interaction terms.

The total Hamiltonian of the joint interacting circuit
represented in the low-energy subspace of subsystems is
then

H̄tot = Ū†all

(∑
k

Hk +Hint

)
Ūall

=
∑
k

D̄k

⊗
l 6=k

ĪTl
+ H̄int, (B15)

which is represented in a Hilbert space of dimension
T1T2 · · ·TN , which can be chosen to be much smaller than
d1d2 · · · dN , the dimension without truncation, though it
of course still scales exponentially in the number of sub-
systems.

We stress again that in order to accurately construct
the low-energy spectrum of the joint circuit Hamiltonian
of the interacting system via Eq. (B15), one needs to use
adequately large truncation dimensions {Tk} for the sub-
systems. This accuracy-dimension tradeoff is similar to
the case of a single qubit or a coupler, where one needs
to use suitably large cutoff values for each circuit node
operator to be able to accurately reproduce the desired
low-energy spectrum. Of course, as the number of in-
teracting subsystems grows, even the use of truncated
subspaces would be insufficient to keep the size of the
Hilbert space computationally tractable. A limited rem-
edy with potentially better scaling than the method we
have used here would be to use a hierarchical truncation
method [58], wherein a large circuit can be divided into
subsystems consisting of a few circuit elements; those
subsystems are again divided into their own subsystems,
and for each level of the hierarchy one uses the same idea
of representing the subsystems in their truncated low-
energy subspace, and rewrites the interaction between
them in that subspace.

Appendix C: Time dyamics of 2-qubit gadgets

In this appendix we show time evolution simulations
for the qubit (Pauli) model of gadgets in Secs. IV B
and IV C. Simulations were performed by solving the
Schrödinger equation using the Hamiltonian Open Quan-
tum Systems Toolkit (HOQST) [59].

The top panel of Fig. 8 shows the populations as a func-
tion of total anneal time for the DQA gadget of Sec. IV C.
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FIG. 8. Dynamics of the two-qubit gadgets. Top panel: state
population as a function of total anneal time for the DQA
gadget of Sec. IV C. Blue and orange lines show the population
for the ground and excited state, respectively. Bottom panel:
adiabatic time scale as a function of λ (gap scales as λ2) for
the LZ gadget of Sec. IV B. Circles show the result for a linear
sweep of the annealing parameter; squares show the Grover-
like sweep. Color-matched dashed lines are visual guides for
λ−4 (circles) and λ−2 (squares) scaling. All parameters are
the same as in the main text.

As expected, the two consecutive gaps of that gadget
lead to coherent oscillations of populations between the
ground and excited state of the system. At large an-
nealing times, the evolution reaches the adiabatic limit
and the oscillations become smaller. The bottom panel of
Fig. 8 shows the adiabatic timescales for the linear sweep
(filled circles) and the Grover sweep (filled squares) of the
LZ gadget in Sec. IV B. The adiabatic timescale is defined
as the time it takes to reach a ground state probability
of 98%. Dashed lines are visual guides, showing that the
linear sweep scales as λ−4 while the Grover sweep scales
as λ−2, demonstrating a quadratic improvement from us-
ing customized Pauli schedules.
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