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Measuring a transmon qubit in circuit QED: Dressed squeezed states
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Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave
resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies
matched to transmon energy states. Realistic coupling is not ideally dispersive, however, so transmon-resonator
energy levels hybridize into joint eigenstate ladders of the Jaynes–Cummings type. Previous work has shown that
ringing up the resonator approximately respects this ladder structure to produce a coherent state in the eigenbasis
(a dressed coherent state). We numerically investigate the validity of this coherent-state approximation to find two
primary deviations. First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding
to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity shears the coherent
state as it evolves. We then show that the next natural approximation for this sheared state in the eigenbasis is a
dressed squeezed state and derive simple evolution equations for such states by using a hybrid phase–Fock-space
description.
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I. INTRODUCTION

Qubit technology using superconducting circuit quantum
electrodynamics (QED) [1,2] has rapidly developed over the
past decade to become a leading contender for realizing a
scalable quantum computer. Most recent qubit designs favor
variations of the transmon [3–9] due to its charge-noise
insensitivity, which permits long coherence times while also
enabling high-fidelity quantum gates [10–12] and high-fidelity
dispersive qubit readout [13–15] via coupled microwave
resonators. Transmon-based circuit operation fidelities are now
near the threshold for quantum error correction protocols,
some versions of which have been realized [16–19].

The quantized energy states of a transmon are measured
in circuit QED by coupling them to a detuned microwave
resonator. For low numbers of photons populating the readout
resonator, the coupling is well studied [1,3,20] and approxi-
mates an idealized dispersive quantum nondemolition (QND)
measurement [21]. Each transmon energy level dispersively
shifts the frequency of the coupled resonator by a distinct
amount, allowing the transmon state to be determined by
measuring the microwave field transmitted through or reflected
from the resonator. However, nondispersive effects become
important when the number of resonator photons becomes
comparable to a characteristic (“critical”) number set by
the detuning and coupling strength [1,22,23]; present-day
experiments often operate in this nondispersive (or nonlinear
dispersive) regime [15,24–26].

In this paper, we analyze and model the nondispersive
effects that occur during the ring-up of a readout resonator
coupled to a transmon. These effects arise from the hy-
bridization of the resonator and transmon states into joint
resonator-transmon eigenstates. While ringing up the resonator
from its ground state, the joint state remains largely confined to
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a single Jaynes–Cummings eigenstate ladder that corresponds
to the initial transmon state. As pointed out in Refs. [27–29],
this joint state can be approximated by a coherent state in
the eigenbasis (recently named a dressed coherent state [29]).
Here we refine this initial approximation and provide a more
accurate model for the hybridized resonator-transmon state.

We numerically simulate the ring-up process for a resonator
coupled to a transmon, then use this simulation to develop
and verify our analytical model. We find two dominant
deviations from a dressed coherent state. First, we show that
the ring-up process allows a small population to leak from an
initial transmon state into neighboring eigenstate ladders, and
find simple expressions that quantify this stray population.
Second, we show that the transmon-induced nonlinearity of
the resonator distorts the dressed coherent state remaining in
the correct eigenstate ladder with a shearing effect as it evolves
and show that this effect closely approximates self-squeezing
of the dressed field at higher photon numbers. We then use a
hybrid phase–Fock-space method to find equations of motion
for the parameters of an effective dressed squeezed state that
is formed during the ring-up process. Our improved model is
satisfyingly simple yet quite accurate.

To simplify our analysis and isolate the hybridization effects
of interest, we restrict our attention to a transmon (modeled
as a seven-level nonlinear oscillator) coupled to a coherently
pumped but non-leaking resonator (using the rotating-wave ap-
proximation). The simplification of no resonator leakage may
seem artificial, but it is still a reasonable approximation during
the resonator ring-up and is also relevant for at least two known
protocols: First, the catch-disperse-release protocol [27] en-
codes qubit information into resonator states with minimal
initial leakage, then rapidly releases the resonator field to
a transmission line. Second, a recently proposed readout
protocol [30] similarly encodes qubit information into bright
and dark resonator states with minimal leakage, then rapidly
distinguishes them destructively using Josephson photomulti-
pliers [31]. Our dressed-squeezed-state model should describe
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the ring-up process of these and similar protocols reasonably
well. Additional effects arising from a more realistic treatment
of the resonator decay will be considered in future work.

Our assumption of negligible resonator damping automat-
ically eliminates qubit relaxation (and excitation) due to the
Purcell effect [22,28,32,33], which in present-day experiments
is often strongly suppressed by Purcell filters [15,34,35]. We
also neglect energy relaxation and dephasing of the qubit (thus
also eliminating dressed dephasing [22,36]).

We note that squeezing of the resonator field may signif-
icantly affect the fidelity of the qubit measurement [37,38],
which can be either increased or decreased, depending on
the squeezing-axis direction. A significant improvement of
the fidelity due to self-developing quadrature squeezing was
predicted for the catch-disperse-release protocol [27]. (An
extreme regime of the self-developing squeezing, with revival
and formation of “cat” states, was experimentally observed
in Ref. [39].) The use of a squeezed input microwave
for the qubit measurement was analyzed in Ref. [40]. A
Heisenberg-limited scaling for the qubit readout was predicted
for the two-resonator measurement scheme based on two-
mode squeezed microwave in Ref. [41]. The significant current
interest in various uses of squeezed microwave states [40–
43] is supported by a natural way of producing them with
Josephson parametric amplifiers [44–49]. All this motivates
the importance of studying squeezed microwave fields in
superconducting circuits containing qubits.

This paper is organized as follows: In Sec. II we describe the
resonator-transmon system and how the numerical simulations
are performed. In Sec. III we discuss the dressed-coherent-
state model and focus on analyzing the inaccuracy of this
model relative to numerical simulation. We quantify two
deviations from the dressed-coherent-state model: stray popu-
lation leakage to incorrect eigenstate ladders (Sec. III B), and
distortion of the remaining dressed state during evolution into
a dressed sheared state (Sec. III C). In Sec. IV, we prove that
a dressed-sheared-state approximates a dressed squeezed state
and then derive hybrid phase–Fock-space evolution equations
for such states. Comparison with the simulation results shows
that the accuracy of the dressed-squeezed-state approximation
is much better than accuracy of the dressed-coherent-state
approximation. We conclude in Sec. V. In the Appendix we
show that, somewhat unexpectedly, dressed coherent states and
dressed squeezed states are practically unentangled despite the
strong entanglement of the dressed Fock states from which
they are composed.

II. MODEL

Following the circuit QED paradigm of measurement [1],
we consider a transmon coupled to a detuned readout resonator
(Fig. 1). We do not simplify the transmon to a two-level
qubit, but instead include the lowest seven energy levels
confined by the cosine potential of the transmon. Although
the transmon eigenstates may be written explicitly as Mathieu
functions [3,50], we have checked that a perturbative treatment
of the transmon as an approximate oscillator with quartic
anharmonicity [3] is sufficiently accurate for our purposes.
We assume a transmon-resonator coupling of the Jaynes–
Cummings type [51] and use the rotating-wave approximation

FIG. 1. (a) Considered system: a transmon coupled to a pumped
resonator. The resonator damping is neglected, since we focus on the
resonator ring-up and/or setups with a tunable coupler. (b) Jaynes–
Cummings ladder of states. Bare states are shown by solid black
lines. Eigenlevels are shown by red dashed lines. When n � nc, the
eigenlevels are significantly different from bare levels.

(RWA) for simplicity. (Notably, this approximation fails at
very high photon numbers, leading to important effects [26].)

A. Pumped resonator-transmon Hamiltonian

In our model the resonator Hamiltonian is

Hr = ωra
†a =

∑
n,k

nωr|n,k〉〈n,k|, (1)

with � = 1, the bare resonator frequency ωr, the lowering
(raising) operator a (a†) for the resonator mode satisfying
[a,a†] = 1, and the resonator index n = 0,1, . . . for successive
energy levels. For completeness we included the transmon
index k = 0,1, . . . ,6 for the seven lowest levels to emphasize
the matrix representation in terms of the joint product states
|n,k〉 ≡ |n〉r ⊗ |k〉q for the bare energy states.

Similarly, the transmon Hamiltonian has the form

Hq =
∑
n,k

Ek|n,k〉〈n,k|, (2)

Ek = E0 + ωqk − η
k(k − 1)

2
. (3)

The dominant effect of the nonlinearity of the cosine potential
for the transmon is the quartic anharmonicity η ≡ ω10 − ω21 >

0 of the upper-level frequency spacings relative to the qubit
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frequency ωq ≡ ω10, where each frequency ωk� ≡ Ek − E�

denotes an energy difference. At this level of approximation,
the transmon has the structure of a Duffing oscillator with a
linearly accumulating anharmonicity ω(k+1)k = ωq − kη. This
approximation is sometimes extended to an infinite number
of levels, Hq = E0 + ωqb

†b − (η/2)b†b(b†b − 1) [52], with
an effective oscillator lowering (raising) operator b (b†)
satisfying [b,b†] = 1, but we explicitly keep only the seven
lowest levels here.

The excitation-preserving interaction (within the RWA) is

HI =
∑
n,k

g
√

n(k + 1)|n − 1,k + 1〉〈n,k| + H.c., (4)

where g is the coupling strength between levels |0,1〉 and |1,0〉.
As in Ref. [3], we neglect the effects of the anharmonicity η

in the coupling for simplicity. Extending this coupling to an
infinite number of transmon levels yields HI = g(ab† + a†b).

Finally, the Hamiltonian for coherently pumping the res-
onator with a classical field ε(t)e−iωdt is (within the RWA)

Hd = ε(t)e−iωdt a† + ε∗(t)eiωdt a

= ε(t)e−iωdt
∑
n,k

√
n + 1|n + 1,k〉〈n,k| + H.c., (5)

where ε(t) is a complex envelope for the drive.
Combining Eqs. (1)–(5) into the total Hamiltonian H =

Hr + Hq + HI + Hd, and rewriting it in the rotating frame of
the drive frequency ωd yields

Hrot =
∑
n,k

{[n(ωr − ωd) + (Ek − kωd)]|n,k〉〈n,k|

+ g
√

n(k + 1)|n − 1,k + 1〉〈n,k| + H.c.

+ ε(t)
√

n + 1|n + 1,k〉〈n,k| + H.c.}. (6)

This simplified Hamiltonian will be sufficient in what follows
to observe the dominant nondispersive effects that affect
the resonator ring-up. Note that we use the rotating frame
in numerical simulations, but physics related to Jaynes–
Cummings ladders of states is easier to understand in the
laboratory frame, so we will often imply the laboratory frame
for clarity in the discussions below.

B. Numerical simulation and diagonalization

For numerical simulation, the Hamiltonian in Eq. (6) is
represented by a 7N × 7N matrix by using the bare energy
basis |n,k〉, where N = 200–800 is the maximum number of
simulated levels for the resonator. We choose experimentally
relevant resonator and transmon parameters, which in most
simulations are ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π =
200 MHz, and g/2π = 100 MHz. For the drive, we change the
frequency ωd to be resonant with specific eigenstate transition
frequencies of interest (detailed later) and use drive amplitudes
typically in the range ε/2π = 10–60 MHz.

The hybridization of the joint eigenstates [see Fig. 1(b)]
is significant when the number of photons n in the resonator
is comparable to or larger than the so-called critical photon

number [1,22,23]

nc = (ωr − ωq)2

4g2
. (7)

For the above parameters nc = 25. This defines the scale
at which we expect significant deviations from the ideal
dispersive model.

We use the following numerical procedure for identifying
the joint hybridized eigenstates |n,k〉 of Eq. (6) without a
drive—we distinguish dressed (eigen) states (and operators)
from bare states by an overline throughout. After setting ε = 0
to eliminate the drive, the matrix representation of Eq. (6) is
numerically diagonalized to obtain an initially unsorted list
of eigenenergies paired with matched eigenstates {En,k,|n,k〉}
for the qubit-resonator system. The one-to-one correspondence
between these pairs and the bare energies paired with matched
bare states {En,k,|n,k〉} may be found by examining the
structure of the RWA interaction Hamiltonian in Eq. (4): Since
excitation number is preserved, there exist the closed sub-
spaces {|n,k〉 : (n + k) = n�} with constant excitation number
n� = 0,1, . . ., which we name RWA strips [26] [see Fig. 1(b)].
Crucially, since energy levels repel during interaction and
avoid crossing, the order of the eigenenergies within a strip
is the same as for bare energies. Thus, for each strip with n�

excitations we first identify the eigenstates |n,k〉 that lie within
the span of that strip; next, we order the eigenenergies En,k to
match the bare energies En,k , which uniquely identifies each
hybridized eigenenergy and matched eigenstate. We then set
the overall sign of each eigenstate such that it does not flip with
changing n. After performing this identification, we construct
a basis-change matrix

U ≡
∑
n,k

|n,k〉〈n,k| (8)

to easily switch between representations numerically. Note
that, without proper identification (sorting) of the eigenstates,
the numerical analysis at large photon numbers is practically
impossible.

The eigenstates |n,k〉 form the Jaynes–Cummings ladders
of effective resonator levels that correspond to a fixed nominal
qubit level k. For brevity we call them eigenladders of
dressed resonator Fock states. Each eigenladder behaves like
a nonlinear resonator, with an n-dependent frequency

ω(k)
r (n) = En+1,k − En,k. (9)

Note that, in this formula, both sides are numerically calculated
in the rotating frame; however, the equation in the laboratory
frame is the same. Conversion to the laboratory frame involves
adding the drive frequency: ωd + ω(k)

r (n) for the resonator
frequency and (n + k)ωd + En,k for energy.

At large photon numbers, n � nc, each |n,k〉 spans a
significant fraction of all bare transmon levels. Nevertheless, as
we will see, ringing up the resonator from its ground state with
an initial transmon level k will primarily excite the states within
the eigenladder corresponding to k. This behavior closely
mimics that of the ideal dispersive case, where a pump excites
the bare resonator states |n〉r while keeping the transmon
state |k〉q unperturbed. However, we also show that there are
small but important dynamical differences between our RWA
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Jaynes–Cummings model and ideal dispersive coupling in the
eigenbasis.

III. DRESSED-COHERENT-STATE MODEL

We now define an ideal coherent state in the eigenbasis [27–
29] (a dressed coherent state) corresponding to a nominal
transmon state k as

|α〉k = e−|α|2/2
∑

n

αn

√
n!

|n,k〉, (10)

so that the only difference from the standard coherent state
of the resonator is that we use eigenstates instead of the bare
states. Perhaps surprisingly, given the eigenstate hybridization,
such a dressed coherent state is practically unentangled
even for |α|2 � nc, in contrast to what one might initially
guess [29]—see the Appendix.

A dressed coherent state is not an eigenstate of the bare
lowering operator a of the resonator. Instead, it is an eigenstate
of the dressed lowering operator [28,36]

a ≡ UaU † =
∑
n,k

√
n + 1 |n,k〉〈n + 1,k| (11)

that removes a collective excitation within the same eigenlad-
der. The parameter α is the expectation value of the dressed
lowering operator, α = k〈α|a|α〉k , which will be useful in what
follows.

Note that, for a dressed coherent state |α〉k , |α|2 is not ex-
actly equal to the average number n̄ of photons in the resonator.
Instead, |α|2 = k〈α|a†a|α〉k is the average dressed excitation
number within eigenladder k. However, the difference is very
small and will be mostly neglected below, so that we will use
n̄ = |α|2. In the cases when the difference may be important,
we will specify the meaning of n̄ explicitly.

A. Model-inaccuracy contributions

During resonator ring-up, we expect the joint qubit-
resonator state to approximate such a dressed coherent state
rather than a bare coherent state as is usually assumed with
ideal dispersive coupling. As such, we quantify the fidelity of
a numerically simulated state |ψ〉 compared with a dressed
coherent state |α〉k as the overlap

F = |〈ψ |α〉k|2, (12)

where the parameter α is chosen to maximize the fidelity.
In practice, we find that an initial guess of α = 〈ψ |a|ψ〉 is
very close to the optimal α, producing nearly indistinguishable
fidelity.

Note that we can expand a numerically calculated state
|ψ〉 = ∑

n,� cn,�|n,�〉 as

|ψ〉 = √
1 − Pstray|ψ〉k + √

Pstray|ψ〉⊥, (13)

splitting it into a part |ψ〉k ∝ ∑
n cn,k|n,k〉 within the “correct”

eigenladder k, and a part |ψ〉⊥ ∝ ∑
n,� �=k cn,�|n,�〉 orthogonal

to that eigenladder, where Pstray = ∑
n,� �=k |cn,�|2 is the stray

population that leaked out of the eigenladder k, and both |ψ〉k
and |ψ〉⊥ are normalized. As such, if we define the overlap
fidelity within the correct eigenladder Fc = |k〈α|ψ〉k|2, then

FIG. 2. Infidelity of coherent-state approximations during res-
onator ring-up. The infidelity 1 − Fb of a bare coherent state
(dotted red line) is compared with the infidelity 1 − F of a dressed
coherent state (dashed black line). The latter displays two distinct
effects: at short time (and small photon number n̄) the dominant
effect is the leakage of a stray population Pstray (thin solid blue
line) out of the correct eigenladder; however, at longer time (and
larger n̄) the infidelity 1 − Fc of the renormalized state within the
correct eigenladder (thick solid orange line) significantly increases
during evolution. Here the system, with parameters ωr/2π = 6 GHz,
ωq/2π = 5 GHz, η/2π = 200 MHz, and g/2π = 100 MHz, is
resonantly pumped from its ground state |0,0〉 with a constant drive
envelope ε/2π = 10 MHz.

we can write the total fidelity as F = (1 − Pstray)Fc, and thus
decompose the infidelity

1 − F = Pstray + (1 − Pstray)(1 − Fc) (14)

into two distinct sources: (i) the stray population Pstray outside
the correct eigenladder, and (ii) the infidelity 1 − Fc compared
with a coherent state within the correct eigenladder.

To test the infidelity of the dressed-coherent-state model,
we numerically simulate the resonator ring-up with a (sudden)
constant drive amplitude ε/2π = 10 MHz, and then calculate
the infidelity according to Eq. (14) as a function of time,
yielding the results presented in Fig. 2. First, we confirm
that the infidelity 1 − F for a dressed coherent state (black
dashed line) is typically orders of magnitude better than the
infidelity 1 − Fb for a bare coherent state (red dotted line); as
expected, 1 − Fb becomes very significant at n � nc. Second,
we can clearly separate the effects of the stray population
leakage Pstray (thin solid blue line) from the infidelity 1 − Fc

of the renormalized state within the correct eigenladder (thick
solid orange line). At short times, the dominant effect is a
small (∼10−5) stray population leakage that rapidly oscillates
and then stays approximately constant. (For clarity we do not
show oscillations for the black dashed line, showing only the
maxima.) However, at longer times the contribution 1 − Fc

becomes the dominant source of infidelity (eventually reaching
∼10−1). In the next two subsections, we quantify these two
sources of infidelity in more detail.

B. Infidelity from stray population

We now focus on the cause of the stray population outside
the correct eigenladder. (Recall that our model neglects qubit
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FIG. 3. Solid blue lines: numerically calculated stray population
Pstray as a function of time t ; dashed black lines: steady-state value
Ps.s.(t), calculated via Eq. (20). (a) Leaked population in the excited
eigenladder |n,1〉 for sudden driving with ε/2π = 60 MHz from
initial ground state |0,0〉. The oscillations reach an initial maximum
of Pmax ≈ 4Ps.s.(0), then dephase to about Ps.s.(t) + Ps.s.(0), with
decreasing Ps.s.(t) because of increasing average photon number n̄. (b)
The same for adiabatic drive ε(t), linearly increasing for the first 10 ns
to the same constant value of 60 MHz. The stray population follows
the steady state, which increases for 10 ns because of increasing ε(t).
(c) Sudden driving with ε/2π = 60 MHz from an initial excited qubit
state |0,1〉, showing population Pstray,0 leaked to the ground-state
eigenladder |n,0〉. This case is fully symmetric with that of panel
(a) because it involves the same pair of transmon levels. (d) The
same driving as in panel (c), but showing leaked population Pstray,2

of the second-excited eigenladder |n,2〉. The behavior is similar to
that of panel (c), but involves the next pair of transmon levels. For
all panels ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 250 MHz,
g/2π = 100 MHz, and ωd is on resonance with the resonator
frequency, corresponding to each initial state.

energy relaxation, dressed dephasing, and Purcell effect.)
Figure 3 shows numerical results for different choices of
initial state and drive amplitude, produced in a manner similar
to Fig. 2, but focusing on shorter times and lower photon
numbers, where the stray population is the dominant source of
infidelity. Initially, the stray population rapidly oscillates from
zero around a steady-state value, then the oscillations damp,
after which the stray population continues to slowly decay on a
longer timescale. We now provide a phenomenological model
that describes this behavior.

A dressed coherent state would naturally be produced by
a dressed displacement Hamiltonian of the form ε∗a + εa†,
as opposed to the bare displacement Hamiltonian ε∗a + εa†

of the drive that appears in Eq. (6). This mismatch between
bare and dressed states in the drive is the source of the stray
population that leaks out of the correct eigenladder during
ring-up. To show this mismatch in a simple way, we first focus
on the ring-up from an initial ground state |0,0〉 = |0,0〉. In
this case the dominant leakage occurs to the eigenladder |n,1〉,
with negligible second-order leakage to the other eigenladders.
As discussed later, the following derivation may be readily
generalized to other initial states, such as |0,1〉 in Figs. 3(c)
and 3(d).

Focusing only on the coupling between eigenladders |n,0〉
and |n,1〉, for n � nc we can write [28,36]

a ≈ ā − g



σ−, 
 = ωr − ωq, σ− =

∑
n

|n,0〉〈n,1|,
(15)

where σ− is the qubit-lowering operator in the eigenbasis. It is
natural to guess that, at n � nc, the resonator-qubit detuning

 should change because of the ac Stark shift, and therefore
Eq. (15) can be replaced with the approximation

a ≈ ā −
∑

n

g


n

|n,0〉〈n,1|, 
n = En+1,0 − En,1, (16)

where 
n is the qubit-resonator detuning with account of
the ac Stark shift, ωq(n) = En,1 − En,0 (see Appendix of
Ref. [35]). We did not prove Eq. (16) analytically, but we
checked numerically that this approximation works well, at
least for our range of parameters. Additionally approximating

n ≈ 
n̄ for a dressed coherent state with n̄ = |α|2, from
Eq. (16) we obtain

a ≈ ā − g


n̄

σ−. (17)

For noninteger n̄, we can use the nearest integer or the
more precise method of averaging 
n over the state. Note
that, for a constant resonant drive, the average number
of photons increases as n̄(t) ≈ |εt |2, before the changing
resonator frequency (9) starts affecting the resonance.

Thus, the drive term in the Hamiltonian can be approxi-
mately expanded in the eigenbasis as

ε∗a + εa† ≈ (ε∗ā + εā†) − g


n̄

(ε∗σ− + εσ+), (18)

where σ+ = (σ−)†. The first term of this effective drive
produces dressed coherent states, while the second term
couples the lowest two eigenladders to cause leakage.

The coupling essentially “copies” the dressed coherent state
from the correct eigenladder |n,0〉 to the neighboring eigen-
ladder. The resulting copy has a relatively small magnitude
because g/
n̄ � 1 and also because the two eigenladders
have a significant frequency shift due to differing energies.
Thus, we assume approximately the same dressed coherent
state α(t) in both eigenladders and use the joint state of the
form |ψ〉 ≈ |α(t)〉0 + c(t)|α(t)〉1, where the small amplitude
c(t) quantifies the leakage to the |n,1〉 eigenladder, so that
the stray population is Pstray = |c|2 � 1. In this case we
can approximately write c = 〈ψ |σ−|ψ〉, and thus find the
evolution ċ = 〈ψ |i[Hrot,σ−]|ψ〉, which simplifies to

ċ ≈ i
εg


n̄

+ i�n̄c, (19)

where �n̄ = 
n̄ + ωd − ωr is the oscillation frequency (note
that �n̄ = 
n̄ for a resonant drive). The steady state for
this evolution (assuming a slowly changing n̄), ċs.s. = 0,
corresponds to the steady-state leakage population

Ps.s. = |cs.s.|2 =
∣∣∣∣ εg

�n̄
n̄

∣∣∣∣
2

. (20)
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For a drive that is suddenly turned on, as in Fig. 3(a), the
stray population will oscillate to reach a maximum

Pmax = |2cs.s.(0)|2 = 4Ps.s.(0) = 4

∣∣∣∣ εg

�0


∣∣∣∣
2

, (21)

which is close to the numerical value for Pmax in Fig. 3(a).
As discussed below, the oscillations eventually dephase, so we
would expect the value Pstray = Pmax/2 after that. However,
by the time it occurs, Ps.s. in Eq. (20), shown by the dashed
black line in Fig. 3(a), significantly decreases because n̄

is already large. As a result, we expect the value Pstray =
Ps.s.(0) + Ps.s.(t) after decay of the oscillations. Here, the first
term comes from continuing dephased oscillations while the
second term comes from the moving center of oscillations
on the complex plane of c. This formula is also close to the
numerical result in Fig. 3(a).

Figures 4(a)–4(d) show in more detail that the functional
form of Eq. (21) agrees well with the numerically obtained

maximum stray populations Pmax in the case of a sudden
drive. In contrast, when the drive ε(t) is adiabatically increased
from zero, then the stray population closely follows the
time-dependent steady state Ps.s. of Eq. (20), as shown in
Fig. 3(b). Our analysis based on Eq. (19) predicts that, in
the diabatic case of a sudden drive, the oscillation frequency
�n̄ should increase when n̄ increases. This is checked in
Fig. 4(e); agreement with numerical results is again very
good.

Now let us discuss the decay of oscillations seen in Fig. 3(a),
which is somewhat surprising since our model does not
include any decoherence. Numerical results show that the
oscillations decay only for a resonant drive (for a strongly
off-resonant drive, n̄ � 1 and oscillations do not decay).
Therefore, we assume a resonant drive, so that n̄(t) ≈ |εt |2.
Let us now take into account the spread in photon number,
n̄ ± √

n̄, which produces a corresponding spread in oscillation
frequency �n = 
n in Eq. (19) that dephases the oscillations.
At sufficiently low photon number (up to several nc), we can

(a)

Analytics
Numerics

(b)

Analytics
Numerics

(c)

Analytics
Numerics

(f)

Analytics
Numerics

(e)

Analytics
Numerics

(d)

Analytics
Numerics

(g)

Analytics
Numerics

(h)

Analytics
Numerics

(i)

Analytics
Numerics

FIG. 4. Model validation for stray population Pstray in the neighboring eigenladder, using a sudden resonant [off-resonant in panel (d)]
drive and starting with |0,0〉 [panels (a)–(g)] or |0,1〉 [panels (h) and (i)]. (a)–(d) Testing of Eq. (21) for the maximum stray population Pmax

against numerical results, by varying (a) the drive amplitude ε, (b) coupling g, (c) resonator-qubit detuning 
, and (d) drive frequency ωd. (e)
Testing that the time-dependent oscillation frequency evolves as �n̄ = 
n̄ given by Eq. (16). (f), (g) Testing of Eq. (23) for the decay time
tdecay of the eigenladder oscillations [as in Fig. 3(a)], using a prefactor of 1.23 for decay to 1/3 amplitude. (h), (i) Similar to panels (a) and
(g), but for the leakage to the second-excited eigenladder |n,2〉 starting from the excited state |0,1〉; in this case Eqs. (21) and (23) need the
following replacements: g �→ √

2g, 
 �→ 
 + η, �0 �→ �0 + η, χ �→ χ ′ = ω(2)
r − ω(1)

r . In all panels, blue dots show numerical results, while
red lines are calculated analytically. We use the following parameters: ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz,
ε/2π = 10 MHz, except for parameters, which are varied, and in panel (g) ε/2π = 50 MHz and in panels (h) and (i) η/2π = 300 MHz.
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use the approximation


n ≈ 
 − 2χn, χ ≈ − ωr

ωq

g2η


(
 + η)
, (22)

which produces the spread of oscillation frequency in Eq. (19)
with the standard deviation δ� � 2χ

√
n̄ ≈ 2χ |ε|t . This im-

plies that the corresponding accumulated phase difference
after a time t is δϕ = ∫ t

0 δ�dt ′ ≈ χ |ε|t2. Assuming that a
phase accumulation of |δϕ| � 1 indicates a significant level of
dephasing, this estimate yields an oscillation decay time

tdecay � |χε|−1/2, (23)

with an unknown prefactor on the order of unity. This estimate
crudely agrees with the oscillation decay in Fig. 3(a). For a
more detailed analysis we checked the numerical dependence
of the decay time on ε and χ in Figs. 4(f) and 4(g). The
agreement is quite good when using a prefactor of 1.23 in
Eq. (23), when the decay time is defined numerically as the
decay of the probability oscillations [as in Fig. 3(a)] to 1/3 of
initial amplitude. Note that this derivation predicts a crudely
Gaussian envelope of oscillation decay for

√
Pstray(t), and this

prediction also agrees with the numerical results (although not
quite well because of the change of the oscillation center cs.s.

over time).
Simple modifications of the above derivation are sufficient

to describe the stray populations when starting from a different
initial state. As an example, let us consider an initially excited
qubit state |0,1〉. In this case there will be two neighboring
eigenladders that interact: the ground eigenladder |n,0〉, and
the second-excited eigenladder |n,2〉. Stray population that
leaks to the ground eigenladder will oscillate precisely as be-
fore between the ground and excited eigenladders, reproducing
Eqs. (20), (21), and (23); this equivalence due to symmetry
is emphasized in Fig. 3(c). In contrast, the stray population
leaking to the second-excited eigenladder |n,2〉 oscillates be-
tween excited and second-excited eigenladders, and so behaves
somewhat differently. We modify our derivation starting from
Eq. (18) to include only the interaction between the eigen-
ladders |n,1〉 and |n,2〉, which yields the following parameter
replacements: g → √

2g, 
n → En+1,1 − En,2, 
 → 
 + η,
�0 → �0 + η, and 2χ → 2χ ′ = ω(2)

r (0) − ω(1)
r (0). Thus, the

equivalents of Eqs. (20) and (23) at low n are

P ′
s.s. =

∣∣∣∣∣
√

2εg

(
 + η − 2χ ′n̄)(�0 + η − 2χ ′n̄)

∣∣∣∣∣
2

, (24)

t ′decay � |χ ′ε|−1/2. (25)

These equations agree with the numerical results shown in
Fig. 3(d) and Figs. 4(h) and 4(i).

Our analysis shows that the stray population of an “incor-
rect” eigenladder considered in this section should be quite
small for typical experimental parameters. The case of an
adiabatically increased drive is more experimentally relevant,
so let us use Eq. (20) and crudely estimate the effect as Pstray ∼
(εg/
2)2. Then for g/2π � 100 MHz, 
/2π � 1 GHz, and
ε/2π � 50 MHz (such drive pumps ∼10 photons within the
first 10 ns), we obtain Pstray ∼ 3 × 10−5. Even if 
/2π is
decreased to 500 MHz in this estimate and ε/2π is increased
to 100 MHz (40 photons within the first 10 ns), the resulting

value Pstray ∼ 2 × 10−3 still remains quite small. Therefore,
this should not significantly affect the qubit measurement error,
at least for present-day experiments. (Recall that we neglected
qubit energy relaxation, dressed dephasing, Purcell relaxation,
and non-RWA effects, which can be responsible for much
larger population transfer to incorrect eigenladders.)

C. Infidelity from shearing

The second contribution to the infidelity of the dressed-
coherent-state approximation in Eq. (14) is due to infidelity
1 − Fc within the correct eigenladder. As seen in Fig. 2, it
becomes increasingly important at longer evolution times,
when the number of photons n̄ becomes large. As discussed
below, this infidelity arises from the effective nonlinearity of
the resonator due to its interaction with the transmon. This
nonlinearity produces a shearing effect on the evolution of the
dressed coherent state that squeezes the state.

Numerically, this distortion is clearly seen by plotting the
Husimi Q function of the renormalized state |ψ〉k [defined as
in Eq. (13)] that remains within the correct eigenladder,

Qψ (α) = 1

π
|k〈α|ψ〉k|2, (26)

where |α〉k is a dressed coherent state as in Eq. (10). The
contour plots of Qψ (α) in the complex plane of α are shown in
Fig. 5(a) for a numerically simulated ring-up evolution, starting
with the state |0,0〉 (there are five snapshots at time moments
separated by 50 ns). If the state |ψ〉k were a perfect dressed
coherent state |ψ〉k = |β〉k centered at β = k〈ψ |ā|ψ〉k , it
would have a Q function Qψ (α) = e−|α−β|2/π with circular
contours. However, Fig. 5(a) clearly shows a progressive
distortion of the initial circular profile into a squeezed ellipse as
the average photon number increases. We prove later that |ψ〉k
is indeed a close approximation of a (minimum-uncertainty)
squeezed state in the eigenbasis |n,k〉—see Fig. 5(b).

The squeezing distortion in Fig. 5 is similar to the self-
developing quadrature squeezing discussed in Ref. [27] for the
catch-disperse-release measurement protocol (e.g., compare
Fig. 5 with the figures in the Supplemental Material of
Ref. [27]). In that protocol, the squeezing was shown to
significantly decrease the measurement error. In general, the
self-developing squeezing can either increase or decrease the
measurement error depending on the angle of the squeezing
axis, and the analysis is clearly important for practical qubit
measurements. A strong self-developing squeezing has been
observed experimentally in Ref. [39].

The reason for the self-developing squeezing is the nonlin-
earity of the transmon, which makes the effective resonator
frequency ω(k)

r (n) dependent on the number of photons n—
see Eq. (9) and the inset of Fig. 5(a). Qualitatively, this
n dependence causes parts of the circles in Fig. 5(a) with
different distances |α| from the origin to rotate with slightly
different angular velocities, thus shearing the circular profile
of an initially coherent state as it evolves. Note that, in
the case of a constant derivative dω(k)

r (n)/dn, the shearing
rate should grow with |α| because dn = 2|α|d|α|; thus, the
effect becomes more important for larger photon numbers.
Also note that the drift of the resonator detuning from the
drive with n could be compensated for by changing the drive
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FIG. 5. (a) Numerically simulated evolution of the dressed Husimi Q function for the state remaining in the correct eigenladder, given an
initial state of |0,0〉 and a resonant drive. Snapshots taken at 50 ns intervals show the progressive shearing of the state caused by resonator
nonlinearity. Inset shows n dependence of the difference 
ω(k)

r = ω(k)
r − ωr between the effective and bare resonator frequencies. The solid blue

(upper) line shows 
ω(0)
r (n) for the ground-state eigenladder, the solid orange (lower) line shows 
ω(1)

r (n) for the excited-state eigenladder, and
the red dashed line indicates the applied drive frequency. (b) Detail of the Q function at 200 ns. The analytical result for a dressed squeezed state
(dashed red) shows good agreement with the numerically simulated state (solid black). The agreement is significantly better for earlier times
(not shown). Parameters are ωr/2π = 6 GHz, ωq/2π = 5 GHz, η/2π = 200 MHz, g/2π = 100 MHz, and ε/2π = 10 MHz. The contours of
the Q function are drawn at the levels of 0.1/π,0.2/π, . . . ,0.8/π .

frequency (chirping); however, this does not affect the shearing
because it originates from the frequency variation within the
photon-number uncertainty n̄ ± √

n̄.
It is easy to analyze the shearing effect in the absence of

the drive. If at t = 0 we have a dressed coherent state given
by Eq. (10) (with notation α replaced by β), then it obviously
evolves as

|ψ(t)〉k = e−|β|2/2
∑

n

βn

√
n!

e−iEn,k t |n,k〉, (27)

where the eigenenergies En,k are in the rotating frame ωd,
i.e., with subtracted terms (n + k)ωd. Let us expand these
energies up to the second order in the vicinity of n̄ =
|β|2 as En,k ≈ En̄,k + ω(k)

r (n̄)(n − n̄) + 1
2 (dω(k)

r /dn)|n̄(n −
n̄)2, where the resonator frequencies ω(k)

r (n) are also in the
rotating frame (i.e., with subtracted ωd) and we neglect the
discreteness of n by assuming n̄ � 1 and sufficiently small
nonlinearity. This gives

|ψ(t)〉k ≈ e−|β|2/2
∑

n

[β(t)]n√
n!

e−iq(n−n̄)2 |n,k〉, (28)

β̇ = −iω(k)
r (n̄)β, q̇ = 1

2

(
dω(k)

r /dn
)
|n̄, (29)

where we neglected the overall phase of |ψ(t)〉k . Thus, to
leading order in |n − n̄|, the effect is an appearance of the
quadratic phase factor e−iq(n−n̄)2

and an obvious rotation of
β(t) when the effective resonator frequency ω(k)

r (n̄) is not
exactly on resonance with the drive. The presence of the
growing quadratic-term coefficient q in the phase factor leads
to a deviation from the dressed coherent state, for which
q = 0. (We restrict our attention to the case q � 1; very

interesting effects beyond this regime, including state revival
and formation of “cat” states, have been observed in Ref. [39].)

It is easy to see that the infidelity of the sheared state (28)
compared with the dressed coherent state |β〉k is

1 − Fc ≈ q2(n − n̄)4 ≈ 3(q|β|2)2, (30)

assuming 1 − Fc � 1 and n̄ � 1. This infidelity grows in
time because of the q evolution (29) due to the nonlinearity.
However, the state evolution due to drive (in a locally linear
system) should preserve 1 − Fc because both states (|ψ〉k and
|β〉k) are equally displaced within the complex plane of α

(mathematically, because the standard displacement operator
is unitary). Therefore, if the state remains in the form (28),
then

d

dt
(q|β|2) = q̇|β|2 = n̄

2

(
dω(k)

r

/
dn

)
|n̄. (31)

In particular, if n̄ ≈ (εt)2 for a resonant drive and the derivative
dω(k)

r /dn does not significantly depend on n [see inset in
Fig. 5(a)], then qn̄ � (dω(k)

r /dn)ε2t3/6, and the infidelity is

1 − Fc � 1
12

[
ε2t3

(
dω(k)

r /dn
)]2

. (32)

This is a very crude estimate because dω(k)
r /dn depends on

n, the approximation n̄ ≈ (εt)2 works only at small t and, most
importantly, the state during the evolution does not remain in
the form (28), as discussed in the next section. The form (28) is
no longer applicable when the motion of the Q-function center
shown in Fig. 5(a) deviates from a straight line. Nevertheless,
comparison with numerical results in Fig. 6 shows that Eq. (32)
gives a reasonable estimate of the infidelity. The blue (upper)
solid line in Fig. 6 is identical to the orange line in Fig. 2
and shows the numerically calculated 1 − Fc for the evolution
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FIG. 6. Infidelity 1 − Fc of the dressed-coherent-state approxi-
mation within the initial eigenladder, starting with |0,0〉 (upper lines,
blue) or |0,1〉 (lower lines, red). Parameters are the same as for Fig. 2.
The solid lines show numerical results, upper (blue) dashed line is
calculated via Eq. (32) with the frequency derivative taken at n = 0,
and the lower (red) dashed line is calculated by integrating Eq. (31).

starting with |0,0〉. The blue (upper) dashed line is obtained
using Eq. (32) with dω(0)

r /dn calculated at n = 0. It fits the
solid line well at short times and then deviates up, mostly
because |dω(0)

r /dn| decreases with n [see inset in Fig. 5(a)]
while analytics still uses the value at n = 0. The red (lower)
solid line in Fig. 6 shows 1 − Fc for the evolution starting with
|0,1〉. This infidelity is crudely two orders of magnitude less
than for the blue (upper) line because the derivative |dω(1)

r /dn|
within the excited-state eigenladder is much smaller than that
for the ground state [see inset in Fig. 5(a)]. The infidelity 1 −
Fc shows a dip near 100 ns. This is because ω(1)

r (n) increases for
n < 20 and decreases for n > 20; therefore q|β|2 in Eq. (31)
first increases and then decreases, passing through zero. At the
point of passing zero we expect 1 − Fc = 0, thus producing
the dip; numerically it is not zero because the form (28) is
only an approximation. Since dω(1)

r /dn depends on n very
significantly (even changing the sign), we cannot use Eq. (32),
so instead we integrated Eq. (31) to obtain the red (lower)
dashed line in Fig. 6. As we see, it agrees well with the solid
line. If the integration of Eq. (31) is also done for the evolution
starting with |0,0〉, then the result is significantly closer to the
blue solid line than the blue dashed line.

Note that the states with a quadratic phase factor as in
Eq. (28) have been discussed in optics long ago [53–55]. It
was shown that these states are squeezed in the broad sense
that variance of a quadrature operator can be smaller than that
for a coherent state. However, to the best of our knowledge,
it was never shown that such states with large n̄ can be
represented as squeezed states in the narrow sense, i.e., they
are close to satisfying the minimum-uncertainty condition.
Moreover, it was often emphasized that the states described
by Eq. (28) are not the minimum-uncertainty states because,
for sufficiently large q, they have crescent-like shape of the
Q function instead of the elliptical shape, and for even larger
q the shape becomes a ring-like one (see experiment reported
in Ref. [39]). In contrast, in the next section we show that in
the practically interesting regime these states are quite close
to the squeezed states in the narrow sense. This is because,
for large n̄, the squeezing factor is determined by q|β|2, while
significant deviation from a minimum-uncertainty squeezed

state starts at |qβ| � 0.1; therefore the squeezing becomes
significant already for such values of q, for which the deviation
(crescent-like shape) is still quite small—see Fig. 5(b). In the
next section we also derive simple evolution equations for
these squeezed states.

IV. DRESSED-SQUEEZED-STATE MODEL

As discussed in the previous section, transmon-induced
nonlinearity of the resonator (i.e., frequency dependence on
the number of photons) evolves a dressed coherent state
into a sheared state of the form (28) with quadratic phase
factor. Unfortunately, it is not easy to describe the evolution
of this sheared state due to drive. In some sense this is
because an evolution due to drive is naturally described in
the phase space (which is almost always used in optics),
while the sheared-state representation requires Fock space.
We will be able to solve this dilemma by showing that the
sheared state (28) is actually close to a (minimum-uncertainty)
squeezed state in the eigenbasis, which we call a dressed
squeezed state. Evolution of a squeezed state due to drive
can be easily described in the phase space, while its evolution
due to nonlinearity can be easily described in the Fock space.
Thus, if we have a reasonably simple conversion between the
Fock and phase spaces for squeezed states, we can describe the
state evolution due to both nonlinearity and drive. This simple
conversion is possible only for large n̄, which is an important
assumption for our derivation below (in practice, it is still well
applicable for the dynamics starting with the vacuum state).

A. Dressed sheared Gaussian state

In this section we prove that, for sufficiently large number
of photons, the (dressed) sheared state is approximately
equivalent to a (dressed) minimum-uncertainty squeezed state.

For |β|2 � 1 we can use a Gaussian approximation for the
wave function (28) in the Fock space. Let us introduce a more
general (dressed) sheared Gaussian state as

|β,K,W 〉k =
∑

n

1

(2πW |β|2)1/4
exp

[
− (n − |β|2)2

4W |β|2
]

× exp[inarg(β)] exp

[
−i

K(n − |β|2)

|β|2
]
|n,k〉,

(33)

in which we used the new notation K = q|β|2 and also
introduced a new parameter W = σ 2

n /σ 2
n,cs, which is the

variance σ 2
n of the Gaussian n distribution compared with

the variance σ 2
n,cs = |β|2 of a dressed coherent state, so that

w = √
W is the relative width of the n distribution. Thus, the

sheared Gaussian state is characterized by four parameters:
β has the standard optical meaning, K characterizes the
shearing, W characterizes the relative width of photon-number
distribution, and k labels the eigenladder. We assume that K

and W are on the order of unity, while |β|2 � 1. Note that
the term inarg(β) can be replaced with i(n − |β|2)arg(β); this
changes only the unimportant overall phase of the state, but
clarifies the role of arg(β) as the linear-order part of the phase
expansion in n around the mean |β|2.
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We call the form (33) a hybrid phase-Fock representation,
because β is borrowed from optical phase space, while K and
W are the Fock-space parameters. Note that the state (33)
is not exactly normalized, but the difference from perfect
normalization is less than 10−5 if |β|2 > max(20W,1/W ).
With a similar accuracy, n̄ = |β|2 for the average number of
photons (excitations in the eigenladder).

The average value of the dressed lowering operator for the
state (33) is

〈ā〉 ≈ β + 2 − W − 1/W

8β∗ − i
KW

β∗ − 2K2W

β∗ ≈ β, (34)

where in the second equality we neglected the terms scaling
as |β|−1. Similarly, neglecting |β|−1 terms, we find

〈ā2〉 ≈ β2 + β2

|β|2
(

1

2
− 1

2W
− 4iKW − 8K2W

)
. (35)

Now let us define the (dressed) quadrature operators,

Xϕ = 1
2 (e−iϕ ā + eiϕā†), (36)

for which ϕ is the quadrature angle (note that notation ϕ was
briefly used for a different quantity in Sec. III B). By using
Eqs. (34) and (35) we find the variance σ 2

Xϕ = 〈X2
ϕ〉 − 〈Xϕ〉2,

σ 2
Xϕ = W + 1/W

8
+ 2K2W + KW sin[2arg(β) − 2ϕ]

+
(

W − 1/W

8
− 2K2W

)
cos[2arg(β) − 2ϕ]. (37)

It is easy to check that the ϕ dependence of this variance
is exactly what would be expected for a minimum-uncertainty
squeezed state. In particular, the product of the minimum and
maximum values of σ 2

Xϕ is the same as for a coherent state,

σ 2
Xϕ,minσ

2
Xϕ,max = 1/16, (38)

with

σ 2
Xϕ,min = [1 + S −

√
(1 + S)2 − 1]/4, (39)

S = 8K2W + (W + 1/W − 2)/2, (40)

and σ 2
Xϕ,max = [1 + S +

√
(1 + S)2 − 1]/4. We see that the

degree of squeezing is determined by the parameter S, so that
S = 0 corresponds to a (dressed) coherent state. The minimum
quadrature variance σ 2

Xϕ,min is achieved at the angle ϕmin =
θ/2, where

θ = 2arg(β) + arctan

(
8KW

16K2W − W + 1/W

)

+π

2
[1 − sgn(16K2W − W + 1/W )], (41)

and the factor of two between θ and ϕmin is to conform with
the standard optical definition of the squeezing parameter,
discussed later.

Thus, we have proven that, for sufficiently large |β|2, the
(dressed) sheared Gaussian state (33) is close to a (dressed)
minimum-uncertainty squeezed state (despite this not being
true for small |β|2 [39,54,55]). Note that the “conservation
of area” criterion (38) for a minimum-uncertainty squeezed
state is valid for quadratures, but is not valid for the Husimi

Q function shown in Fig. 5, because the Q function involves
convolution with a coherent state, and therefore the width of
the short axis can be at most a factor of

√
2 shorter than that

of a coherent state.

B. Conversion into squeezed-state notations

Using the standard optical definition [56,57], a dressed
squeezed state should be defined as

|β,ξ 〉k = exp[βā† − β∗ā] exp[ξ ∗ ā2

2
− ξ

ā†

2
]|0,k〉, (42)

where ξ ≡ reiθ is the squeezing parameter, while β is a dis-
placement in the phase space. The smallest standard deviation
σXϕ,min for the quadrature Xϕ should then be achieved [56,57]
at the angle ϕmin = θ/2 [thus corresponding to our notation
in Eq. (41)], and its value should be σXϕ,min = e−rσXϕ,cs

compared with the standard deviation σXϕ,cs for a coherent
state. The longest axis is σXϕ,max = erσXϕ,cs at the angle
ϕmax = θ/2 ± π/2.

Comparing these standard optical definitions with our
approximate results (38), (39), and (41) for large |β|2, we
obtain the conversion

r = 1
2 arccosh(S + 1), (43)

where S is given by Eq. (40), while θ is given by Eq. (41).
It is easy to check that the case K = 0, W = 1 corresponds

to the dressed coherent state, ξ = 0. In the absence of shearing,
K = 0, we have a dressed amplitude-squeezed state for W < 1
[as is obvious from Eq. (33)] and a dressed phase-squeezed
state for W > 1—see Eq. (41), from which θ/2 = arg(β) for
W < 1 and θ/2 = arg(β) ± π/2 for W > 1. As shown in the
appendix, the dressed squeezed state is practically unentangled
for large |β|2, in spite of a significant entanglement of the
qubit-resonator eigenstates.

By using Eqs. (41) and (43), we can convert a sheared Gaus-
sian state (33) with sufficiently large |β|2 into a (minimum-
uncertainty) squeezed state (42). Similarly, we can convert any
(minimum-uncertainty) squeezed state with sufficiently large
|β|2 into a sheared Gaussian state. Most importantly, we know
that a squeezed state is simply displaced in phase space by
an action of a drive ε(t). This means that a sheared Gaussian
state (33) remains a sheared Gaussian state under an action
of the drive (assuming large |β|2). Since it also keeps the
form (33) under the evolution due to nonlinearity, this form is
always preserved (approximately), and therefore it is sufficient
for us to characterize the evolution of the state by evolution of
only three parameters: β, K , and W . We emphasize that this
simplicity is possible only for large |β|2 or, in other words, for
a sufficiently small nonlinearity. In general, the simultaneous
evolution due to nonlinearity and drive creates states that
cannot be described as (minimum-uncertainty) squeezed states
or sheared states. Nevertheless, this approximation works quite
well for our system.

C. Phase–Fock-space evolution of dressed squeezed state

Now let us derive evolution equations for the parameters
K , W , and β of the dressed sheared (squeezed) state. We will
first consider the evolution in the absence of the drive, then
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the evolution only due to the drive, and then add up the terms
from these evolutions.

Evolution of the dressed sheared state (33) due to nonlin-
earity of the resonator is given by Eq. (29), which leads to

K̇ = 1
2 |β|2(dω(k)

r /dn
)∣∣

n=|β|2 . (44)

Note that we do not need to take a derivative of |β|2 because
this type of evolution does not change |β|2. In the absence of
the drive, the parameter β evolves only due to the resonator
frequency detuning from the rotating frame,

β̇ = −iω(k)
r (n)

∣∣
n=|β|2β. (45)

To derive formulas for the evolution of β, K , and W

due to drive ε(t), we use the fact [57] that, for a squeezed
state (42), the parameter ξ remains constant, while β changes
as β̇ = −iε. Therefore, the parameters S and θ given by
Eqs. (40) and (41) should remain constant with changing β.
The corresponding evolution K̇ and Ẇ can be found from the
system of equations

∂S

∂K
K̇ + ∂S

∂W
Ẇ = 0,

∂θ

∂K
K̇ + ∂θ

∂W
Ẇ + ∂θ

∂β
β̇ = 0, (46)

which has the following solution:

Ẇ = 8KWRe(ε/β), K̇ =
(

1 − W 2

4W 2
− 4K2

)
Re(ε/β),

(47)
where we took into account the equation β̇ = −iε. Note that
here we should not include evolution of β due to detuning,
Eq. (45), because otherwise the angle θ would not be constant.
Also note that, in the term (∂θ/∂β)β̇ in Eq. (46), we imply
derivatives for both Re(β) and Im(β).

Combining the evolution equations both in the absence of
a drive and from the drive itself, we finally obtain

Ẇ = 8KWRe(ε/β), (48)

K̇ =
(

1 − W 2

4W 2
− 4K2

)
Re(ε/β) + 1

2
|β|2(dω(k)

r

/
dn

)∣∣
n=|β|2 ,

(49)

β̇ = −iω(k)
r (n)

∣∣
n=|β|2β − iε. (50)

These equations together with the conversion formulas (41)
and (43) are our main result for the evolution of the dressed
squeezed state. They allow very efficient simulation, since
they avoid the large dimensionality of the pure Fock-space
evolution specified by Eq. (6). Equations (48)–(50) are a hybrid
between the Fock-space and the phase-space representations,
capable of describing evolution of the dressed squeezed state
as it rings up due to a coherent drive ε. To our knowledge,
this is a novel representation, which was not previously used
in optics.

Note that the derivation of these equations assumes large
|β|2. However, they can be numerically applied even for evo-
lution starting with vacuum, β(0) = 0. There is no divergence
due to the factor of β in the denominator because, at small
times, β = −iεt and therefore Re(ε/β) = Re(i/t) = 0. We
used these relatively simple equations to compare with the

numerical results for evolution due to the Hamiltonian (6) in
a system with typically 7 × 300 levels and found very good
agreement. The reason why Eqs. (48)–(50) still work well
when starting with the vacuum is that the effect of nonlinearity
at short times is small (K ≈ 0, W ≈ 1), while by the time
when the squeezing due to nonlinearity becomes important,
|β|2 is already large. Note, however, that for |β|2 � 100 the
sheared and squeezed states are significantly different, and then
it is important to use the dressed squeezed state (42) [not the
sheared state (33)] as the more accurate model for comparison
with simulation results.

Figure 5(b) shows comparison between the Q function
for the numerically calculated state |ψ〉0 (solid lines) and for
the dressed squeezed state (dashed lines) calculated by using
Eqs. (48)–(50). At the end we have converted parameters
K and W into the squeezing parameters r and θ by using
Eqs. (41) and (43) and then calculated the Q function using
the standard formula [56] for a squeezed state. If the parameter
β is not calculated from Eq. (50) but is instead computed
as β = 0〈ψ |ā|ψ〉0, then the visual agreement between the
dashed and solid lines becomes insignificantly better. The
visible difference between solid and dashed lines is because
the numerical state |ψ〉0 is not exactly the dressed squeezed
state; in particular, for Fig. 5(b) |qβ|√W = |K/β|√W =
0.023, which is comparable to the value of 0.1, above which
a significant crescent shape appears. The dashed lines in
Fig. 5(b) are drawn for the squeezing parameter r = 0.550.
This corresponds to the minimum and maximum quadrature
variances of 0.333 and 3.00 compared with the coherent state
(0.340 and 3.01 numerically for |ψ〉0) and the scaling factors
of 0.816 and 1.41 for the short and long axes of the Q function,
compared with the coherent state (numerically 0.81 and 1.43
in the vicinity of the center).

D. Accuracy of dressed-squeezed-state approximation

To quantify the accuracy of the dressed-squeezed-state
approximation and evolution equations (48)–(50), we compare
the numerically calculated state |ψ〉0 for the evolution shown in
Fig. 2 (starting with |0,0〉) with the result from Eqs. (48)–(50)
for the sheared Gaussian state, which is then converted into
the dressed squeezed state |β,ξ 〉0. The infidelity 1 − F =
1 − |0〈β,ξ |ψ〉0|2 is shown in Fig. 7 as the dashed blue (lower)
line. It can be compared with similar infidelity for the dressed
coherent state shown as the dashed orange (upper) line, for
which we also used Eq. (50). We see that the accuracy of
the dressed-squeezed-state model is much better than for
the dressed-coherent-state model when the infidelity of the
latter exceeds 10−3. However, at short times both infidelities
practically coincide and are significantly larger than the
coherent-state infidelity 1 − Fc shown in Fig. 2 (also copied as
the solid orange line in Fig. 7). Since the difference between
the orange dashed and orange solid lines is the method of
α(t) calculation, either via Eq. (50) or as α = 0〈ψ |ā|ψ〉0, this
indicates an inaccurate result of Eq. (50) for the state center
in the phase space. Let us similarly calculate the center of
the dressed squeezed state as β = 0〈ψ |ā|ψ〉0 = α, while the
squeezing parameter ξ is still calculated via Eqs. (48)–(50).
This produces the blue (lower) solid line in Fig. 7, which
is crudely two orders of magnitude lower than 1 − Fc, thus
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FIG. 7. Comparison between the dressed-squeezed-state and
dressed-coherent-state models within the “correct” eigenladder.
Parameters are the same as in Figs. 2 and 5, evolution starts with
|0,0〉. Blue (lower) lines show time dependence of the infidelity
1 − F = 1 − |0〈β,ξ |ψ〉0|2 for the dressed squeezed states, orange
(upper) lines show infidelity 1 − |0〈α|ψ〉0|2 for the dressed coherent
states. For solid lines the state centers β(t) and α(t) are calculated as
average values of the operator ā. For the dashed lines, β(t) and α(t) are
obtained from Eq. (50). For the dotted lines, in Eqs. (48)–(50) we use
correction (51) for the drive amplitude. The dressed squeezed-state
model is about two orders of magnitude more accurate than the
dressed coherent-state model.

confirming that the dressed-squeezed-state approximation is
much better than the dressed-coherent-state approximation.

The reason for the inaccuracy of β(t) [or α(t)] calculation
is rather simple. For the dashed lines in Fig. 7 we used the
bare-basis value for the drive amplitude ε, while within an
eigenladder it is actually slightly different. By using properly
normalized eigenstates for n � nc, it is easy to obtain the
second-order correction in Eq. (15): a ≈ [1 + 1

2 (g/
)2σz]ā −
(g/
)σ− (see, e.g., Eq. (53) in Ref. [28]), which leads to
correction of the effective drive amplitude,

ε̃ ≈ [
1 − 1

2 (g/
)2
]
ε, (51)

within the ground-state eigenladder at n � nc. Within the
excited-state eigenladder the correction will then be ε̃ ≈ {1 +
1
2 (g/
)2 − 1

2 [
√

2g/(
 + η)]2}ε. Using the effective drive
amplitude (51) in Eqs. (48)–(50) instead of ε produces dotted
lines (instead of dashed lines) in Fig. 7. We see that the
dotted lines are quite close to the solid lines; therefore, the
simple correction (51) is sufficient for an accurate theory.
Even better accuracy can be achieved if we use numerical
matrix elements for the effective drive amplitude within the
ground-state eigenladder,

ε̃ = 〈n − 1,0|a|n,0〉√
n

ε, (52)

which now depends on n ≈ n̄. For Fig. 7 this produces a
line (not shown), which closely follows the blue solid line
for the squeezed-state approximation and a line practically
indistinguishable from the orange solid line for the coherent-
state approximation.

We emphasize that, in Fig. 7, the infidelity of the
dressed-squeezed-state model is �10−3, while for the dressed-
coherent-state model it is only �10−1. Note that we always
convert the sheared state (33) with parameters K and W into
the squeezed state (42) via Eqs. (41) and (43) before comparing

with numerical |ψ〉0. If this is not done, the infidelity of
the sheared Gaussian state in Fig. 7 would be above 10−3

at t < 100 ns (n̄ < 40), reaching 3 × 10−2 for n̄ < 0.5 and
becoming practically equal to the blue lines only at t > 160
ns (n̄ > 100).

Thus, we have numerically confirmed that the dressed-
squeezed-state approximation performs much better than
the dressed-coherent-state approximation. Nevertheless, the
inaccuracy of the dressed-squeezed-state model still grows in
time and may eventually become significant.

V. CONCLUSION

In this paper we analyzed the ring-up of a readout
resonator coupled to a transmon qubit. The bare bases of
the transmon and resonator hybridize into a joint eigenbasis
that is organized into natural eigenladders associated with
each nominal transmon state. As was pointed out previously,
ringing up the resonator from its ground state using a
coherent pump approximately creates a coherent state in this
eigenbasis (i.e., a dressed coherent state) that is confined to
the eigenladder corresponding to the initial transmon state.
We analyzed the deviations from this first approximation and
developed a more accurate dynamical model for the ring-up
process.

Through numerical simulation, we demonstrated that the
ring-up evolution deviates from the dressed-coherent-state
model in two important respects. First, the initial transmon
population may leak into other (“incorrect”) eigenladders
that correspond to different initial transmon states. Second,
even within the initial (“correct”) eigenladder the state may
differ from a coherent state. We analyzed both deviations and
developed analytical models to quantify the effects.

The stray population that leaks outside the correct eigen-
ladder arises from the mismatch between the coherent pump
(in the bare basis) and the hybridized resonator (in the
eigenbasis). We found that this mismatch creates interesting
dynamics over a relatively short timescale after the pump
is applied and were able to describe the resulting damped
oscillations between neighboring eigenladders quantitatively.
The most important result is that for typical experimental
parameters the occupation of incorrect eigenladders remains
small (�10−4); therefore, this effect should not significantly
contribute to the qubit measurement error in present-day
experiments. Note, however, that our analysis focuses solely
on the population leakage caused by the pump itself during
the ring-up process; as such, it neglects other important effects
that contribute to the total leakage to incorrect eigenladders
in practice, such as qubit energy relaxation, the Purcell effect,
interactions with defects, dressed dephasing, and non-RWA
effects. Note that Ref. [26] extends the analysis presented here
to include non-RWA effects, thus explaining an important
example of experimentally observed leakage at high photon
numbers.

The dynamics of the hybridized resonator state remaining
within the correct eigenladder is nontrivial due to the effective
resonator nonlinearity induced by the interaction with the
transmon. This nonlinearity leads to a significant deviation
from the dressed-coherent-state picture—in our numerical
simulations the infidelity of the dressed coherent state reaches
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∼10−1. The nonlinear evolution shears the phase-space
profile of the resonator state, deforming initially circular
coherent-state profiles into elliptical and crescent-shaped
profiles over time. We showed that, for practical ranges of
parameters, these sheared profiles approximate ideal squeezed
states in the eigenbasis (i.e., dressed squeezed states)—in our
simulations the infidelity of the squeezed-state picture reaches
∼10−3, or roughly two orders of magnitude better than that of
a dressed coherent state. Note that the dressed squeezed state
is practically unentangled, similar to the dressed coherent
state. By using a hybrid phase-Fock-space approach, we
derived simple equations of motion [Eqs. (48)–(50)] for the
self-developing squeezing, which naturally generalize the
evolution of a coherent state. These equations of motion
depend only on the photon-number dependence of the dressed
resonator frequency, which may be added phenomenologically
from precomputed numerical simulations or measured
experimentally.

We emphasize that the self-developing squeezing may sig-
nificantly affect the qubit measurement error, either decreasing
or increasing it, depending on the squeezing axis angle relative
to the line passing through the state centers in the phase space
for the qubit states |0〉 and |1〉. The resonator field for the
qubit state |0〉 is affected by squeezing much more than for the
state |1〉 because of much more efficient level repulsion within
the ground-state ladder of the Jaynes–Cummings Hamiltonian
for the multilevel transmon. Further analysis of this subject is
definitely important.

The dressed-squeezed-state model provides an efficient
and accurate description of the resonator physics during a
sufficiently rapid ring-up process, when the resonator decay
may be neglected (as was assumed in this paper). This regime is
also physically relevant for at least two known protocols: the
catch-disperse-release measurement of a qubit [27] and the
readout protocol [30] based on Josephson photomultipliers.
However, in the standard method of transmon measurement,
the resonator decay cannot be neglected (except during the
ring-up), which will require an extension of our dressed-
squeezed-state model. This generalization will be considered
in future work.
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APPENDIX: VANISHING ENTANGLEMENT IN DRESSED
COHERENT AND SQUEEZED STATES

In this Appendix we show that dressed coherent states and
dressed squeezed states are practically unentangled for large
average numbers of photons, n̄. For a dressed coherent state
we can anticipate this result because coherent states with large
n̄ are practically classical. Thus, the transmon is essentially
driven by a classical field and should therefore produce an
unentangled state. However, this result is rather paradoxical

because the dressed coherent state (10) is constructed out of
highly entangled eigenstates of the transmon-resonator system,
so significant entanglement could be naively expected. The
derivation below resolves this paradox. A similar result also
applies to a dressed squeezed state.

Let us consider a general dressed state

|ψ〉 =
∑

n

cn|n,k〉, (A1)

where |n,k〉 are the eigenstates of the transmon-resonator
system for the transmon nominally in the state |k〉q, and the
coefficients cn describe the nominal resonator state

∑
n cn|n〉r,∑

n |cn|2 = 1. Our first goal is to derive a condition for which
this dressed state can be approximately represented as a direct
product of the resonator state

∑
n cn|n〉r and some transmon

state (which will be generally different from the nominal state
|k〉q).

The eigenstate |n,k〉 can be expanded in the bare basis
(within the RWA strip) as

|n,k〉 =
∑

l

d
(n,k)
l |n − l,k + l〉, (A2)

where the summation involves a few transmon levels, −k �
l � kmax − k, k < kmax � 7. The coefficients d

(n,k)
l depend

on n because the coupling (4) between neighboring bare
levels |n − l,k + l〉 and |n − l − 1,k + l + 1〉 is proportional
to

√
n − l. However, this dependence can be neglected,√

n − l ≈ √
n̄ − l if

σn � n̄, kmax � n̄, (A3)

where by the standard deviation σn we characterize the spread
of n in the state (A1). In this case we can use approximation
with n-independent coefficients d

(k)
l (which may still depend

on n̄),

|n,k〉 ≈
∑

l

d
(k)
l |n − l,k + l〉. (A4)

Substituting Eq. (A4) into Eq. (A1), shifting the indices, n −
l → n, and changing the order of summation, we obtain

|ψ〉 ≈
∑

l

d
(k)
l

∑
n

cn+l|n,k + l〉

=
∑

l

d
(k)
l |k + l〉q|φl〉, (A5)

|φl〉 =
∑

n

cn+l |n〉r, (A6)

where |k + l〉q is the transmon level and |φl〉 is the resonator
state, which depends on the transmon index l. Note that |φl〉
are (practically) normalized, since the coefficients cn+l are
the same as in the normalized state (A1) and the shift of
indices by l is not important when the condition (A3) is
satisfied.

The dependence of |φl〉 on the transmon index l indicates
the entanglement between the transmon and resonator. If |φl〉
were not dependent on l, then |ψ〉 in Eq. (A5) is an (unen-
tangled) direct product of the transmon and resonator states.
Moreover, any l-dependent phase factor, |φl〉 = eiϕl |φ0〉, may
be absorbed into the transmon state, still yielding a direct
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product. This gives us a condition for the approximate
absence of entanglement: |〈φ0|φl〉| ≈ 1 for all transmon
indices l.

Thus, we have shown that, if∣∣∣∣∣
∑

n

c∗
ncn+l

∣∣∣∣∣ ≈ 1 (A7)

for any l within the relevant range, |l| � kmax � 7, then the
dressed state (A1) is approximately a direct product,∑

n

cn|n,k〉 ≈
∑

n

cn|n〉r ⊗
∑

l

eiϕl d
(k)
l |k + l〉q, (A8)

where ϕl = arg(
∑

n c∗
ncn+l) and d

(k)
l are the coefficients in the

eigenstate (A4).
Now let us show that the condition (A7) is satisfied for a

dressed coherent state |α〉k given by Eq. (10). Since in this
case cn = exp(−|α|2/2)αn/

√
n!, we find

∑
n

c∗
ncn+l =

∑
n

e−|α|2 |α|2n

n!

|α|leilarg(α)

√
(n + 1)(n + 2) · · · (n + l)

≈ eiϕl , ϕl = larg(α), (A9)

where we approximated
√

(n + 1)(n + 2) · · · (n + l) ≈ nl/2 ≈
|α|l . This approximation requires |α|2 � l2. Thus, the dressed
coherent state |α〉k is practically unentangled if |α|2 � k2

max.
The solid lines in Fig. 8(a) show the inaccuracy of the direct-

product approximation (A8) for the dressed coherent state |α〉0

as a function of |α|2 for the following typical parameters:
(ωr − ωq)/2π = 1 GHz, η/2π = 200 MHz, and g/2π = 100
MHz (lower blue line, nc = 25) or g/2π = 141.4 MHz (upper
orange line, nc = 12.5). As a measure of inaccuracy we use
1 − |〈ψdp|α〉0|2, where the direct-product state |ψdp〉 is given
by Eq. (A8). Note that, for small α, we average coefficients
d

(n,k)
l in Eq. (A2) to obtain d

(k)
l . We see that the solid lines in

Fig. 8(a) significantly increases with n̄ ≈ |α|2 until n̄ becomes
much larger than nc. This behavior is due to a competition
between the continuously increasing entanglement of eigen-
states (A2) and the decrease of entanglement due to the
increasingly satisfied condition (A7). However, we see that
even at large n̄, the dressed coherent state |α〉0 is very close
to the direct-product state (A8). For comparison, we show
with blue and orange dots the much larger inaccuracy when
we try to approximate the corresponding eigenstates |n,0〉
(i.e., the dressed Fock states) with similar direct-product wave
functions. It is easy to prove that the best such approximation is
the bare state with the largest coefficient in the expansion (A2);
the visible kinks in Fig. 8(a) are due to the change of this best
bare state. Figure 8(b) is similar to Fig. 8(a), except that it
shows the entanglement of formation [58] (equal to the entropy
of entanglement for pure states) for the same dressed coherent
states |α〉0 and dressed Fock states |n,0〉. With this measure we
again confirm that the dressed coherent states are practically
unentangled, in contrast to the strongly entangled dressed Fock
states [note an overall similarity between Figs. 8(a) and 8(b)].

Even though a dressed coherent state is practically un-
entangled, there is a strong classical correlation between
the resonator and transmon dynamics. This can be seen by
adding explicit time dependence into Eq. (A8), thus going
from the rotating frame into the laboratory frame. Replacing

FIG. 8. (a) Solid lines: infidelity 1 − |〈ψdp|α〉0|2 of approximat-
ing the dressed coherent state |α〉0 with a direct-product state |ψdp〉
given by Eq. (A8), as a function of |α|2. For comparison, the dots
show similar infidelity for the eigenstates |n,0〉, i.e., dressed Fock
states, as a function of n (axes of n and |α|2 coincide). We assume
(ωr − ωq)/2π = 1 GHz, η/2π = 200 MHz, and g/2π = 100 MHz
(lower blue line and dots, nc = 25) or g/2π = 141.4 MHz (upper
orange line and dots, nc = 12.5). (b) Entanglement of formation EF

(coinciding with entropy of entanglement) for the dressed coherent
states |α〉0 (lines) and dressed Fock states (dots) with the same
parameters as in (a).

coefficients cn for the coherent state with cn(t) = e−inωrt cn(0)
(the remaining factor e−iE(k,n̄)t is an overall phase and therefore
not important), we find α(t) = e−iωrtα(0). As a result, φl =
l arg[α(0)] − lωrt , and therefore the dressed coherent state
evolves in time as

|α〉k = |e−iωrtα(0)〉r ⊗
∑

l

e−ilωrt eilarg[α(0)]d
(k)
l |k + l〉q.

(A10)
We see that both resonator and transmon states are evolving
with the period 2π/ωr in a phase-synchronized way; the
resonator-state evolution is a simple oscillation, but the
transmon evolution within the period is quite nontrivial. This
is exactly what we would expect classically for a nonlinear
oscillator that is harmonically driven with frequency ωr. We
have performed numerical simulations for the transmon state
evolution in Eq. (A10) using the x representation (where
x in this case is the superconducting phase difference) and
confirmed such nontrivial evolution within one period of
oscillations when n̄ is significantly larger than nc.

To check the direct-product condition (A7) for a dressed
squeezed state, let us use its approximate sheared Gaussian
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representation in Eq. (33). Then we find

∑
n

c∗
ncn+l ≈ eilarg(β)

[
1 − l2

2Wn̄
− 2K2W

n̄
l2

]
, (A11)

assuming large n̄ = |β|2. We see that the condition (A7) is
satisfied if

n̄ � k2
max max

(
1/2W, 2K2W

)
. (A12)

In this case the dressed squeezed state is practically unen-
tangled. For the dressed coherent state (W = 1, K = 0) this
inequality reduces to n̄ � k2

max, as expected.
Note that, in the case where the dressed sheared state is

practically unentangled, the phase ϕl = l arg(β) in Eq. (A8)
is still the same as for the dressed coherent state (except for
the notation change, α → β). Therefore, the transmon state
and its evolution within the period of ωr is still the same as
for the dressed coherent state with α = β. In other words, for
sufficiently large n̄ there is no difference for the transmon if it
is driven by a coherent or a squeezed field from the resonator.
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