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Two-time correlators for propagating squeezed microwave fields in transients
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We analyze two-time correlators as the most natural characteristic of a propagating quadrature-squeezed field
in the transient regime. The considered system is a parametrically driven resonator with a time-dependent drive.
Using a semiclassical approach derived from the input-output theory, we develop a technique for calculation
of the two-time correlators, which are directly related to fluctuations of the measured integrated signal. While
in the steady state the correlators are determined by three parameters (as for the phase-space ellipse describing
a squeezed state), four parameters are necessary in the transient regime. The formalism can be generalized to
weakly nonlinear resonators with additional coherent drive. We focus on squeezed microwave fields relevant to
the measurement of superconducting qubits; however, our formalism is also applicable to optical systems. The
results can be readily verified experimentally.
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I. INTRODUCTION

Squeezed microwave fields (SMFs) [1] have recently be-
come the focus of extensive research efforts related to su-
perconducting quantum computing. This was enabled by a
rapid progress in the development of practical superconduct-
ing parametric amplifiers [2–6], which have become versa-
tile sources as well as detectors of SMFs. Applications of
intracavity and propagating (itinerant) SMFs include qubit
readout [7,8], metrology [9–11], continuous-variable entan-
glement [12,13], control of artificial-atom fluorescence [14],
etc. Among other experimental achievements are demonstra-
tions of the dynamical Casimir effect [15–17], tomography
of an itinerant SMF [18], and detection of SMF radiation
pressure [19].

Besides generation in phase-sensitive parametric amplifi-
cation, SMFs are also self-generated in the process of circuit
QED measurement of superconducting qubits [20,21] due to
effective nonlinearity of the resonator induced by coupling
with the qubit. Since squeezing affects the qubit measurement
error, and for fast readout the steady-state regime is not
reached, analysis of squeezing in transients is very important.
The corresponding dynamics of the intracavity squeezing
has been recently analyzed [22]; however, there is still no
theory for transient squeezing of the propagating SMF, which
determines the qubit measurement accuracy. Moreover, our
extensive search for any papers discussing transient evolution
for a resonator-produced propagating squeezed field resulted
in only a few remotely related references [23–26], which
cannot serve as a starting point in developing a theory to

*Present address: University of California, Berkeley, CA 94720,
USA; jatalaya@berkeley.edu

†Present address: University of Southern California, Los Angeles,
CA 90089, USA.

‡Present address: Google Inc., 340 Main Street, Venice, CA 90291,
USA.

FIG. 1. (a) Analyzed system. Propagating microwave field [de-
scribed by operator F (t ) or complex stochastic variable f (t )] is
squeezed due to parametric drive of the resonator with changing in
time amplitude ε(t ) = |ε(t )| eiθ (t ). The amplified quadrature phase
ϕ(t ) also changes in time, producing the noisy output signal fϕ (t ).
The resonator damping rate is κ , and the incoming vacuum noise
is described by v(t ). (b) An example of the parametric drive change,
producing transient evolution of the resonator field [depicted in panel
(a)] and of the propagating field.

answer this physically interesting and practically important
question. Therefore, while our motivation is to describe fast
measurement of superconducting qubits, we need to start with
development of the basic theory of propagating SMFs in
transients.

In this work, we analyze the transient regime of the
propagating SMF, generated by a parametrically driven linear
resonator [27], as shown in Fig. 1(a). The case of a weakly
nonlinear resonator with a coherent drive (as in the qubit
measurement) is slightly more complicated but equivalent—
see Appendix B. As needed in practical applications (e.g., for
optimized qubit readout), we focus on two-time correlators
[28] for the quadrature (homodyne) measurement [29,30],
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with quadrature angle ϕ changing in time (similar to the
variational measurement [31,32]). In particular, we find that
in transients the dependence of the correlator on two angles ϕ1

and ϕ2 is characterized by four parameters, in contrast to only
three parameters needed in a steady state, as for the ellipse in
phase space, which is traditionally used to describe squeezing.
Our results can be readily checked experimentally.

II. SYSTEM AND HAMILTONIAN

Let us consider a parametrically modulated resonator
[Fig. 1(a)] described in the rotating-wave approximation by
the Hamiltonian (h̄ = 1)

H = �(t ) a†a + i

4

[
ε∗(t ) a2 − ε(t ) a†2]

, (1)

where the resonator detuning �(t ) = ωr (t ) − ωd and the para-
metric drive amplitude ε(t ) = |ε(t )| eiθ (t ) can depend on time
[17,23,24,33] (slowly in comparison with the rotating-frame
frequency ωd, but arbitrarily fast in comparison with evolution
in the rotating frame). In the laboratory frame, this Hamilto-
nian corresponds to the resonator frequency modulation at the
double frequency, ωr − |ε| sin(2ωdt − θ ). The more general
case of a nonlinear resonator and added coherent drive is
discussed in Appendix B.

The propagating microwave field leaking from the res-
onator, described by operator F (t ), is amplified by a phase-
sensitive amplifier, which amplifies the quadrature phase
ϕ, so that the measured operator is Fϕ (t ) = [F (t ) e−iϕ +
F †(t ) eiϕ]/2. In contrast to most previous works, we assume a
time-dependent phase ϕ(t ). After the mixer, the ϕ-quadrature
measurement produces a classical (normalized) fluctuating
output signal fϕ (t ), which in a typical experiment is integrated
with a weight function w(t ) to produce [31] the measurement
result R = ∫

w(t ) fϕ (t ) dt . To analyze fluctuations of R, we
need 〈R2〉 = ∫∫

w(t1)w(t2)〈 fϕ1 (t1) fϕ2 (t2)〉 dt1dt2, where ϕk ≡
ϕ(tk ). Therefore, in experiments it is important to know the
correlator

Kϕ1ϕ2 (t1, t2) ≡ 〈 fϕ1 (t1) fϕ2 (t2)〉, (2)

which will be the main object analyzed in this paper. Note
that in our model, fϕ (t ) is only noise (amplified and measured
propagating squeezed vacuum), i.e., 〈 fϕ (t )〉 = 0; it is simple
to add a nonzero signal by adding a coherent drive into Eq. (1)
[cf. Eq. (A18)], but this does not affect fluctuations because of
linearity. For simplicity, we assume that the resonator energy
decay rate κ is only due to coupling κout with the transmission
line, κ = κout (generalization to the case κ > κout is trivial in
the same-temperature case, see below).

In the simplest case of zero detuning (� = 0), zero tem-
perature, and time-independent ϕ and ε, the propagating
squeezed vacuum produces the steady-state correlator

Kϕϕ (0, τ ) = δ(τ )

4
− κ|ε|

4κ+
e−κ+|τ |/2 cos2(ϕ − θ/2)

+ κ|ε|
4κ−

e−κ−|τ |/2 sin2(ϕ − θ/2), κ± = κ ± |ε|,

(3)

as can be obtained via the conventional input-output for-
malism [34,35], assuming |ε| < κ . Correspondingly, the
integrated correlator for ϕ = θ/2 is

∫ ∞
−∞ Kϕϕ (0, τ ) dτ =

(1/4)(κ−/κ+)2, so it is squeezed compared with the vacuum
value of 1/4, while for ϕ = (θ + π )/2 it is antisqueezed:∫ ∞
−∞ Kϕϕ (0, τ ) dτ = (1/4)(κ+/κ−)2.

Note that dependence of the correlator Kϕϕ (0, τ ) on ϕ is
described by three real parameters. Also note that since in the
steady state Kϕϕ (0, τ ) depends only on the time difference
τ ≡ t2 − t1, it is natural to use the Fourier transform, so
the squeezing is usually analyzed in terms of the squeezing
spectrum [29,36] Sϕ (ω) ≡ 4

∫ ∞
−∞ e−iωτ Kϕϕ (0, τ ) dτ . How-

ever, during transients the two-time correlator Kϕ1ϕ2 (t1, t2)
depends on both times, so introducing a time-dependent spec-
trum Sϕ1ϕ2 (t1, ω) via a similar Fourier transform is not natural.
This is why we focus on Kϕ1ϕ2 (t1, t2).

III. SEMICLASSICAL MODEL FOR MEASURED
FLUCTUATIONS

Instead of using the conventional input-output formalism
[34], we will use a simpler semiclassical stochastic model [37]
to analyze the temporal correlations of the output signal fϕ (t ).
As shown in Appendix A, the correlators obtained using this
model are exact for our linear system (1); the model is still a
good approximation for a weakly nonlinear resonator.

In this semiclassical model, the fluctuation of the (quan-
tum) propagating output field F (t ) is treated as a complex-
valued stochastic variable,

f (t ) = −v(t ) + √
κ α(t ), (4)

where the complex-valued stochastic variable α(t ) describes
fluctuations of the intracavity field, while the incoming vac-
uum noise [Fig. 1(a)] is described by a complex-valued
Gaussian noise v(t ) with two-time correlators

〈v(t ) v∗(t ′)〉 = (n̄b + 1/2) δ(t − t ′), 〈v(t ) v(t ′)〉 = 0, (5)

where 〈...〉 denotes ensemble average and n̄b = [exp(ωr/T ) −
1]−1 is the average number of bath thermal photons. For
brevity of formulas, we will assume the temperature T to be
zero (so n̄b = 0); however, for T 	= 0 all correlators in this
paper can be simply multiplied by the factor 1 + 2n̄b.

The intracavity field fluctuation α(t ) for a parametrically
modulated resonator (1) evolves as

α̇(t ) = −
(κ

2
+ i�

)
α(t ) − ε(t )

2
α∗(t ) + √

κ v(t ). (6)

Note that in our normalization, |α|2 corresponds to the number
of photons in the resonator, while | f |2 corresponds to the
propagating number of photons per second. The decay rate κ

is frequency independent, i.e., we use the Markovian approxi-
mation [28]. The term −εα∗/2 describes effective increase of
κ by |ε| for the quadrature phase ϕ = θ/2 and its decrease by
|ε| for ϕ = (θ + π )/2.

The output signal fϕ (t ) from the quadrature measurement
is given by the real-valued stochastic variable

fϕ (t ) = Re[e−iϕ(t ) f (t )], (7)
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so the correlator of interest (2) can be calculated as

Kϕ1ϕ2 (t1, t2) = 1

2
Re[Kf f (t1, t2) e−i(ϕ1+ϕ2 )]

+ 1

2
Re[Kf f ∗ (t1, t2) e−i(ϕ1−ϕ2 )], (8)

Kf f (t1, t2) ≡ 〈 f (t1) f (t2)〉, (9)

Kf f ∗ (t1, t2) ≡ 〈 f (t1) f ∗(t2)〉. (10)

We see that for given t1 and t2, the dependence of
Kϕ1ϕ2 (t1, t2) on ϕ1 and ϕ2 is described by four real parameters
[e.g., Re(Kf f ), Im(Kf f ), Re(Kf f ∗ ), and Im(Kf f ∗ )]. As will
be discussed later, in the steady state there are only three
independent real parameters because Kf f ∗ in this case is
real. Note that Kf f and Kf f ∗ obviously satisfy the symmetry
relations [38],

Kf f (t, t ′) = Kf f (t ′, t ), Kf f ∗ (t, t ′) = [Kf f ∗ (t ′, t )]∗. (11)

Now let us calculate the correlators Kf f (t1, t2) and
Kf f ∗ (t1, t2) using the semiclassical model (4)–(6). Because
of the symmetry, it is sufficient to assume t2 > t1 (the δ-
function contribution to Kf f ∗ at t1 = t2 is discussed below).
Let us introduce the column vector containing both correla-
tors, K(t1, t2) = [Kf f (t1, t2), Kf f ∗ (t1, t2)]T. From Eq. (4) we
obtain

K(t1, t2) = κ

[ 〈α(t2) α(t1)〉
〈α∗(t2) α(t1)〉

]
− √

κ

[ 〈α(t2) v(t1)〉
〈α∗(t2) v(t1)〉

]
,

(12)

since 〈v(t2) α(t1)〉 = 〈v∗(t2) α(t1)〉 = 0 because of causality.
Now using Eq. (6), we find the evolution of K(t1, t2) as a
function of t2,

∂K(t1, t2)/∂t2 = M(t2) K(t1, t2), (13)

where the matrix M(t ) describes the ensemble-averaged evo-
lution of the vector (α, α∗)T following from Eq. (6) without
the noise term (contribution from the noise v averages to zero
because of linearity),

M(t ) =
[−κ/2 − i� −ε(t )/2

−ε∗(t )/2 −κ/2 + i�

]
. (14)

Note that M(t ) is Hermitian only if � = 0.
To find the initial condition for Eq. (13) at t2 =

t1 + 0, we use Eq. (12) with 〈α(t1 + 0) v(t1)〉 = 0 and
〈α∗(t1 + 0) v(t1)〉 = √

κ/2, where the last equation follows
from Eq. (6): α∗(t1 + dt ) ≈ α∗(t1) + √

κ v∗(t1) dt , while
〈|v(t1)|2〉 = 1/(2 dt ) from Eq. (5). Therefore,

K(t1, t1 + 0) = κ

[ 〈α2(t1)〉
〈|α2(t1)|〉 − 1/2

]
. (15)

The solution of Eq. (13) with the initial condition (15) can
be expressed via the Green’s function 2 × 2 matrix G(t |tin ),
defined as

∂G(t |tin )/∂t = M(t ) G(t |tin ), G(tin|tin ) = 1. (16)

Thus, for K (now expressed via Kf f and Kf f ∗ ) we obtain

[
Kf f (t1, t2)

Kf f ∗ (t1, t2)

]
= κ G(t2|t1)

[ 〈α2(t1)〉
〈|α2(t1)|〉 − 1/2

]
. (17)

To complete the calculation of Kf f and Kf f ∗ , we need the
second moments of the intracavity field fluctuations, 〈α2(t1)〉
and 〈|α2(t1)|〉. Following the result of Ref. [22], they can be
obtained as a solution of a system of four first-order differen-
tial equations. Alternatively, they can be obtained from Eq. (6)
as (see [39,40])

[〈|α2(t1)|〉 〈α2(t1)〉
〈α∗2(t1)〉 〈|α2(t1)|〉

]
= κ

2

∫ t1

t0

G(t1|t ′) G†(t1|t ′) dt ′ + G(t1|t0)

[〈|α2(t0)|〉 〈α2(t0)〉
〈α∗2(t0)〉 〈|α2(t0)|〉

]
G†(t1|t0), (18)

where 〈α2(t0)〉 = Tr[a2ρ(t0)], 〈|α2(t0)|〉 = Tr[a†a ρ(t0)] +
1/2, and ρ(t0) is a given intracavity state at an initial time
t0, for which we assume a positive Wigner function (for
t0 → −∞, the initial state is irrelevant). This assumption
allows us to regard α(t ) as a classical complex-valued
stochastic variable—see Appendix A.

Equations (16)–(18) are the main result of this paper. Using
these equations with M(t ) defined in Eq. (14), we can find the
correlators Kf f and Kf f ∗ , which can then be used to obtain
the main correlator of interest Kϕ1ϕ2 (t1, t2) via Eq. (8). As
mentioned above, in the case of a nonzero bath temperature,
the correlators should be multiplied by 1 + 2n̄b.

At t2 = t1, the correlator Kf f ∗ contains the singular con-
tribution (n̄b + 1/2) δ(t2 − t1), as follows from Eqs. (4) and
(5), while Kf f does not have a singularity. Since in this case
ϕ1 = ϕ2, the correlator Kϕ1ϕ2 (t1, t2) has the singular contribu-
tion (1/4)(1 + 2n̄b) δ(t2 − t1). In a real experiment, at t2 ≈ t1
there is also a contribution from the additional noise of a
not-quantum-limited amplifier.

In the derivation we assumed that energy decay in the
resonator is due only to coupling with the outgoing transmis-
sion line, i.e., κ = κout. If this is not the case, the correlators
Kϕ1ϕ2 , Kf f , and Kf f ∗ for t1 	= t2 should be simply multi-
plied by the factor κout/κ . This can be shown by repeating
the derivation with Eq. (4) replaced by f = −v + √

κout α

and Eq. (6) replaced by α̇ = −(κ/2 + i�)α − (ε/2)α∗ +√
κout v + √

κ − κout vadd, where the additional uncorrelated
noise vadd(t ) satisfies Eq. (5) with the same temperature.
Alternatively, the multiplication of the correlators by κout/κ is
rather obvious because the system is then equivalent to adding
a beamsplitter with transmission amplitude

√
κout/κ to the

outgoing transmission line (after the circulator) in Fig. 1(a).
Note that the singularity of correlators at t2 = t1 does not
change when κout 	= κ , because of the additional noise.

Even though our results have been derived for the case
of a linear parametrically driven resonator (1), we emphasize
that they remain practically the same if a weak nonlinearity
is added to the resonator, as well as a coherent drive (see
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Appendix B). In this case the evolution of fluctuations should
be linearized in the vicinity of the classical evolution (this
modifies the matrix M) and we need to use the Gaussian
approximation.

IV. STEADY-STATE REGIME

In the steady state we can assume that the parametric drive
amplitude ε does not depend on time (as well as parameters
� and κ). This is the case considered in the literature (e.g.,
[29,34,37]). Using our formalism (with n̄b = 0), we can easily
find the Green’s function G(t |tin ) by finding eigenvalues and
eigenvectors of the matrix M. Then from Eqs. (17) and (18)
we obtain

Kf f (0, τ ) = −κε

4

[(
1 − 2i�

ε

)
e−κ−|τ |/2

κ−

+
(

1+ 2i�

ε

)
e−κ+|τ |/2

κ+

]
, (19)

Kf f ∗ (0, τ ) = δ(τ )

2
+ κ|ε|2

4ε

(
e−κ−|τ |/2

κ−
− e−κ+|τ |/2

κ+

)
, (20)

where κ± = κ ± ε and ε =
√

|ε|2 − 4�2 if |�| < |ε|/2 (over-
damped case) or ε = i

√
4�2 − |ε|2 if |�| > |ε|/2 (under-

damped case). The condition of stability is obviously |ε|2 <

κ2 + 4�2. The singular contribution δ(τ )/2 added into
Eq. (20) follows from Eqs. (4) and (5).

We see that in the steady state, Kf f ∗ (0, τ ) is always real.
Therefore, the squeezing is determined by three real parame-
ters (which depend on τ ), in contrast to four parameters in the
general (transient) case.

V. GENERAL FORM OF TWO-TIME CORRELATOR

A convenient way of introducing the four real parameters
(A, B, φ, and ψ) is by rewriting Eq. (8) as

Kϕ1ϕ2 (t1, t2) = A cos(ϕ1 − φ) cos(ϕ2 − ψ )

+ B sin(ϕ1 − φ) sin(ϕ2 − ψ ) + δ(t2 − t1)/4,

(21)

where we explicitly added the singular term (note that ϕ1 = ϕ2

when t1 = t2), and the parameters A, B, φ, and ψ (all depend-
ing on t1 and t2) can be obtained from the equations (A −
B) ei(φ+ψ ) = Kf f (t1, t2) and (A + B) ei(φ−ψ ) = Kf f ∗ (t1, t2) −
δ(t2 − t1)/2. As discussed above, in the steady state Kf f ∗

is real, and therefore φ = ψ , thus again leaving only three
independent real parameters.

Note that for ϕ1 = ϕ2, the correlator Kϕϕ (t1, t2) as a func-
tion of ϕ is always (even in the transient regime) parameter-
ized by only three parameters. In the steady state, measure-
ment of these three parameters fully defines Eq. (21) since
φ = ψ , thus predicting the correlator for ϕ1 	= ϕ2 as well.
However, in the general (transient) case this is impossible
because of one extra parameter. Comparing Eqs. (3) and (21),
it is tempting to interpret the angles φ and ψ in Eq. (21) as
squeezing directions at t1 and t2, respectively. However, this
interpretation is incorrect, because in general both φ and ψ

depend on both t1 and t2, not only as φ(t1) and ψ (t2).

FIG. 2. Parameters A and B (top panel) and φ and ψ (bottom
panel) as functions of τ = t2 − t1 for several values of time t1

passed after the abrupt change of the parametric drive shown in
Fig. 1(b), κt1 = 0.25, 1, 2, ∞. In the steady state, φ = ψ . We use
θ̃ = π/2, |ε|/κ = 0.5, and � = 0.

VI. EXAMPLE OF TRANSIENT EVOLUTION WITH φ �= ψ

To observe experimentally the discussed features of the
squeezing in transients, the simplest case is to use no detuning
(� = 0) and to change abruptly the parametric drive ampli-
tude |ε(t )| eiθ (t ) (with a reasonably long cycle to accumulate
ensemble statistics). If only |ε(t )| is changing [23], then
the dynamics is still not very interesting (squeezing is still
characterized by only three parameters—see Appendix C 3).
Therefore, the natural choice is to keep |ε| constant but to
abruptly change the phase θ (t ), as shown in Fig. 1(b). Let us
assume that θ (t ) = 0 for t < 0 and θ (t ) = θ̃ for t > 0. Then
solving Eqs. (16)–(18) we obtain

Kf f (t1, t1 + τ ) = κ[P− + P+] eiθ̃ , (22)

Kf f ∗ (t1, t1 + τ ) = κ[P+ − P−], (23)

P± =
{

κ|ε|
4(κ2−|ε|2 ) [(1 − cos θ̃ ) e−κ±t1 + i sin θ̃ e−κt1 ] − |ε|

4κ±

}
× e−κ±τ/2, (24)

where κ± = κ ± |ε| and τ > 0. Figure 2 shows the corre-
sponding parameters A, B, φ, and ψ in Eq. (21) as functions
of τ for several values of t1. As expected, we see that φ 	= ψ ,
except in the steady state (t1 → ∞).

Thus, in this example the steady-state squeezing is de-
scribed by three parameters: A(τ ), B(τ ), and φ (not depend-
ing on τ ), while the transient squeezing is described by four
parameters: A, B, φ, and ψ , which all depend on both τ

and t1. The same conclusion of three versus four parameters
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remains true if the correlator Kϕ1ϕ2 (t1, t1 + τ ) is integrated
over τ or if we apply the Fourier transform over τ (to obtain a
time-dependent squeezing spectrum).

To check our results experimentally (especially the pres-
ence of the fourth parameter), it is natural to use a narrower-
band flux-pumped degenerate Josephson parametric amplifier
(JPA) as the parametrically driven resonator and another
broader-band degenerate JPA as a phase-sensitive amplifier.
For κ/2π ∼ 1–3 MHz (and |ε|/κ ∼ 0.5), it should be easy to
change the pump phase abruptly on the scale of κ−1, while
the amplifier still can resolve the transients. The amplified
phase in this case should also change in time, so that the
correlator Kϕ1ϕ2 (t1, t2) is obtained via ensemble averaging for
all phases ϕ1 and ϕ2. Note that experimentally it is easier to
use a phase-preserving (nondegenerate) amplifier in Fig. 1(a)
instead of the phase-sensitive amplifier with time-varying
amplified quadrature. As discussed in Appendix C 1, all our
results remain the same for a phase-preserving amplifier,
except the singular contribution to Kf f ∗ becomes twice as
large. (In a real experiment the singular contribution broadens
because of the finite bandwidth of the amplifier.)

VII. CONCLUSIONS

We have developed the theory for analyzing the squeezing
of a propagating microwave field in the transient regime. The
most natural way to characterize squeezing in this case is via
the two-time correlators Kϕ1ϕ2 (t1, t2) of the detector output
with different quadrature angles ϕ1 and ϕ2, since in experi-
ments these correlators are directly related to the fluctuations
of the integrated signal. In our theory the correlators Kϕ1ϕ2

are expressed via the field fluctuation correlators Kf f and
Kf f ∗ , for which the differential equations have been derived
using the semiclassical model. For practical applications, the
amplified phase ϕ(t ) will need to be optimized using the ideas
of the variational measurement. Our theory is equally applica-
ble to squeezing in optics (then phase-sensitive amplification
is simply replaced with homodyne detection), though it is
more challenging to realize transients of optical squeezing
experimentally.
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APPENDIX A: CORRELATORS FOR PROPAGATING
SQUEEZED FIELD—SEMICLASSICAL MODEL

In this section we discuss a semiclassical description of
the quantum fluctuations of the propagating field leaking out
of the cavity. The main advantage of this approach is that it
enables us to calculate the temporal correlators of the mea-
sured quadrature signals using classical stochastic equations.
The semiclassical model is derived from the conventional
input-output formalism [34,35]. We show that for a linear
resonator, the correlators calculated within the semiclassical
model are exactly equal to the correlators calculated in the
standard quantum way.

1. Correlators in the input-output formalism

In the standard quantum approach, the correlator
Kϕ1ϕ2 (t1, t2) for the measured normalized quadrature signal
fϕ (t ) with a time-varying quadrature phase ϕ(t ) is given by
the symmetrized combination

Kq
ϕ1ϕ2

(t1, t2) = 〈Fϕ1 (t1) Fϕ2 (t2)〉 + 〈Fϕ2 (t2) Fϕ1 (t1)〉
2

, (A1)

where Fϕ (t ) is the quadrature operator for the propagating
field. It is related to the field operator F (t ) as

Fϕ (t ) = 1
2 [e−iϕF (t ) + eiϕF †(t )], (A2)

and the Heisenberg picture is used for all operators.
In the input-output theory [34], the field leaked from the

cavity is written as

F (t ) = −V (t ) + √
κ a(t ), (A3)

where a(t ) is the annihilation operator for the intracavity
mode, for simplicity we assume κ = κout, and the operator
V (t ) of the incoming vacuum noise satisfies the commutation
relations

[V (t ),V †(t ′)] = δ(t − t ′), [V (t ),V (t ′)] = 0, (A4)

while the average values of the products are

〈V †(t )V (t ′)〉 = n̄b δ(t − t ′), 〈V (t )V (t ′)〉 = 0, (A5)

where n̄b = [exp(ωr/T ) − 1]−1 depends on the bath temper-
ature T . In this section, we will assume T = 0 (n̄b = 0), but
generalization to a nonzero temperature is rather straightfor-
ward. The evolution of the operator a(t ) is [34,35]

ȧ(t ) = −κ

2
a(t ) + i[H (t ), a(t )] + √

κ V (t ). (A6)

It is possible to show [37] that the propagating field F (t )
satisfies the same commutation relations as V (t ),

[F (t ), F †(t ′)] = δ(t − t ′), [F (t ), F (t ′)] = 0, (A7)

and, therefore, the correlator (A1) for quadratures can be
written without symmetrization,

Kq
ϕ1ϕ2

(t1, t2) = 〈Fϕ1 (t1) Fϕ2 (t2)〉. (A8)

Using Eq. (A2), we can write the correlator as

〈Fϕ1 (t1) Fϕ2 (t2)〉 = 1

4
[〈F (t1) F (t2)〉 e−i(ϕ1+ϕ2 )

+ 〈F (t1) F †(t2)〉 ei(ϕ2−ϕ1 )

+ 〈F †(t1) F (t2)〉 ei(ϕ1−ϕ2 )

+ 〈F (t2) F (t1)〉∗ei(ϕ1+ϕ2 )], (A9)

where the two-time averages are [34]

〈F (t1) F (t2)〉 = κ 〈T [a(t2) a(t1)]〉, (A10a)

〈F (t1) F †(t2)〉 = δ(t1 − t2) + κ 〈a†(t2) a(t1)〉, (A10b)

〈F †(t2) F (t1)〉 = κ 〈a†(t2) a(t1)〉. (A10c)

The relations (A10a)–(A10c) are the standard results of
the input-output theory; they are valid for arbitrary t1 and
t2. In Eq. (A10a), the time-ordering operator T is defined
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in the usual way: T [A(t1)B(t2)] = B(t2)A(t1) if t1 < t2 and
T [A(t1)B(t2)] = A(t1)B(t2) if t1 > t2.

Without loss of generality we assume t1 < t2. Then, using
Eqs. (A8)–(A10), the correlator (A1) for the measured quadra-
ture signal can be written as

Kq
ϕ1ϕ2

(t1, t2) = κ

2
Re[〈a(t2) a(t1)〉e−i(ϕ1+ϕ2 )

+ 〈a†(t2) a(t1)〉e−i(ϕ1−ϕ2 )]. (A11)

2. Intracavity correlators via Wigner representation

The two-time averages 〈a(t2) a(t1)〉 and 〈a†(t2) a(t1)〉 in
Eq. (A11) can be calculated using the standard quantum-
regression formulas [34]

〈a(t2) a(t1)〉 = Tr[a ρ̃(t2)], (A12a)

〈a†(t2) a(t1)〉 = Tr[a†ρ̃(t2)], (A12b)

where ρ̃(t ) is an unphysical (in particular, non-Hermitian)
density matrix, which has the initial condition

ρ̃(t1) = a ρ(t1), (A13)

relating it to the physical density matrix ρ(t ) of the resonator
at the moment t1, while in between t1 and t2 it evolves in the
same way as ρ [cf. Eq. (A6)],

ρ̇ = −i[H, ρ] + κ (aρa† − a†aρ/2 − ρa†a/2), (A14)

so that the equation for ˙̃ρ is Eq. (A14) with ρ replaced
by ρ̃. Note that in Eqs. (A12) the left-hand sides assume
the Heisenberg picture, while the right-hand sides use the
Schrödinger picture.

The justification of our semiclassical model for the out-
put field can be based on the Wigner representation of the
resonator density matrix ρ(t ). Instead of the standard Wigner
function, depending on x and p [corresponding to (a + a†)/2

and (a − a†)/2i], we will use a slight modification, as in
Refs. [34,37], in which the Wigner function depends on α =
x + ip and α∗ = x − ip. So we will use the Wigner transfor-
mation W , defined as

W[ρ(t )] = W (α, α∗, t )

=
∫

Tr
[
ρ(t ) exp(za† − z∗a)

]
ez∗α−zα∗ d2z

π2
, (A15)

where d2z ≡ d (Re z) d (Im z) corresponds to the integration
over the complex phase space. Note that W is real if ρ is
Hermitian (then complex conjugation of W reduces to the
transformation z → −z). However, W is complex if ρ is non-
Hermitian. The normalization following from Eq. (A15) is∫

W (α, α∗, t ) d2α = Tr[ρ(t )]. Note that the definition (A15)
allows us to think of α and α∗ as independent variables which
are not necessarily conjugate to each other (even though the
final expressions are evaluated for conjugate values). For
example, the partial derivative ∂αW ≡ ∂W/∂α is given by
Eq. (A15) with extra factor z∗ inside the integral, while ∂α∗W
produces the factor −z inside the integral.

To use the Wigner representation in Eq. (A12), we need
to apply the Wigner transformation (A15) to the nonphysical
density matrix ρ̃; for that we will need the relations [34]
(which are straightforward to derive)

W[aρ] =
(
α + 1

2
∂α∗

)
W, W[ρa†] =

(
α∗ + 1

2
∂α

)
W,

W[a†ρ] =
(
α∗ − 1

2
∂α

)
W, W[ρa] =

(
α − 1

2
∂α∗

)
W.

(A16)

Then using Eqs. (A12), (A13), and (A16), we can express the
two-time averages in Eq. (A11) as [34]

〈a(t2) a(t1)〉 =
∫

d2α1d2α2

(
α2 + 1

2
∂α∗

2

)
W (2|1)

(
α1 + 1

2
∂α∗

1

)
W (1)

=
∫

α2 W (2|1)

(
α1 + 1

2
∂α∗

1

)
W (1) d2α1d2α2, (A17a)

〈a†(t2) a(t1)〉 =
∫

α∗
2W (2|1)

(
α1 + 1

2
∂α∗

1

)
W (1) d2α1d2α2, (A17b)

where W (1) ≡ W (α1, α
∗
1 , t1) is the Wigner function at time

t1 and W (2|1) ≡ W (α2, α
∗
2 , t2|α1, α

∗
1 , t1) is the propagator for

the Wigner function from time t1 to time t2, which can be
obtained from Eq. (A14). Note that the first and second forms
of Eq. (A17a) differ only by the term (1/2)∂α∗

2
, which gives

zero contribution after integration by parts over the whole
space of α2; the same cancellation is used in Eq. (A17b).

To find the propagator W (2|1), we need to convert the
evolution equation (A14) into the Wigner representation. The
conversion is relatively simple for a linear resonator. Let us
consider the rotating-frame Hamiltonian

H = � a†a + i

4

[
ε∗a2 − εa†2] + ε∗

c a + εca†, (A18)

which is more general than the Hamiltonian (1) in the main
text due to addition of a coherent drive with amplitude εc,
while the parametric drive still has the amplitude ε. For
example, εc can represent the input signal in a parametric
amplifier. Note that in the case εc 	= 0, the intracavity and
outgoing fields include the signal component, in contrast to
the main text, where we considered only noise. Also note that
all parameters in the Hamiltonian (�, ε, εc) as well as the
decay rate κ can depend on time. (This dependence should be
slow in comparison with the resonator frequency ωr but can be
arbitrarily fast compared with evolution in the rotating frame.)

Applying the Wigner transformation (A15) to Eq. (A14)
and using Eqs. (A16) and (A18), we obtain the following
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evolution equation for the Wigner function [34,37]:

∂tW = −∂α (�W ) − ∂α∗ (�∗W ) + κ

2
∂2
αα∗W, (A19)

�(α, α∗, t ) = −
(κ

2
+ i�

)
α − ε

2
α∗ − iεc. (A20)

Note that in this derivation, the relations (A16) should be
applied several times, e.g.,

W[a2ρ] =
(
α + 1

2
∂α∗

)2
W, W[ρa2] =

(
α − 1

2
∂α∗

)2
W,

W[a†aρ] =
(
α∗ − 1

2
∂α

)(
α + 1

2
∂α∗

)
W. (A21)

Most importantly, Eq. (A19) for the Wigner function
evolution has the same form as the Fokker-Planck equation
[34,41] for the evolution of a probability distribution, in
which �(α, α∗, t ) has the physical meaning of a drift velocity.
Moreover, Eq. (A20) for � has the same form as for the
evolution of a classical field in the cavity. This similarity
between the Wigner function and the classical probability
distribution will be the basis of the proof that the correlator
(A1) can be calculated within the semiclassical model.

Note that for the averages (A12) we need to consider the
evolution of an unphysical (non-Hermitian) density matrix
ρ̃ and therefore unphysical (complex) Wigner function W .
Nevertheless, for the propagator W (2|1) in Eqs. (A17), it is
sufficient to consider physical (real) W in Eq. (A19). This is
because of the linearity of Eq. (A14) (linearity of quantum
mechanics), so that W (2|1) is just the Green’s function of
Eq. (A19) with initial condition W (α2, α

∗
2 , t1|α1, α

∗
1 , t1) =

δ2(α1 − α2) ≡ δ[Re(α2 − α1)] δ[Im(α2 − α1)].
Moreover, in the calculation of the propagator W (2|1) us-

ing Eq. (A19), the Wigner function W remains positive, since
the initial condition δ2(α1 − α2) is positive and Eq. (A19) is a
second-order partial differential equation. (This fact follows
from Pawula’s theorem [41]; normalization for the Wigner
function is preserved automatically.) Therefore, in this case
the Wigner function W can be interpreted as a classical
probability distribution in phase space, which evolves due
to the drift � and diffusion (see below). Similarly, W (1) in
Eq. (A17) is also positive (and therefore can be interpreted
as a classical probability distribution) if the Wigner function
at some earlier time t0 < t1 is positive. This is what we
assume below, for example, assuming that in a distant past
the evolution started from vacuum (which has positive Wigner
function).

Note that if at some time moment t0 the Wigner function
is Gaussian (for example, the resonator state is vacuum in a
distant past), then it will remain Gaussian at any later time t >

t0 [this can be shown explicitly using Eqs. (A19) and (A20)].
However, in our proof of the semiclassical model for the linear
case (S18), we do not need Gaussianity of the resonator state;
we only need positivity of the Wigner function at the initial
time t0. [Actually, as can be shown from Eqs. (A11), (A17),
(A19), and (A20), even the Wigner function positivity is not
needed for our main result, Eqs. (16)–(18) of the main text;
however, for the proof presented here, we need to assume the
positivity.]

3. Semiclassical model

As discussed in the main text, in the semiclassical model
we consider a stochastic evolution of the classical field α(t )
in the cavity, which is caused by the Hamiltonian, dissipation,
and classical complex-valued noise v(t ), which imitates the
vacuum noise V (t ) incident on the cavity from the transmis-
sion line. This noise has correlators

〈v(t ) v∗(t ′)〉 = (n̄b + 1/2) δ(t − t ′), 〈v(t ) v(t ′)〉 = 0,

(A22)

which are classical counterparts of the quantum relations (A4)
and (A5). For simplicity we assume zero temperature, so that
n̄b = 0, though generalization to a nonzero temperature is
simple.

The evolution of the intracavity field [counterpart of
Eq. (A6)] is

α̇ = −κ

2
α − i∂α∗h(α, α∗) + √

κ v(t ), (A23)

where h(α, α∗) is the classical Hamiltonian, corresponding to
the quantum Hamiltonian H . For the Hamiltonian (A18) of
a driven linear resonator, the classical Hamiltonian h can be
obtained from H by simply replacing a with α and a† with α∗,
so that

h(α, α∗) = �|α|2 + i

4
[ε∗α2 − ε(α∗)2] + ε∗

c α + εcα
∗,
(A24)

and therefore the field evolution is

α̇ = −
(κ

2
+ i�

)
α − ε

2
α∗ − iεc + √

κ v(t ). (A25)

In general, the classical Hamiltonian h should be chosen so
that α̇ correctly describes the evolution of the field α in the
classical case. An initial condition for α(t ) is usually not
needed, because if the evolution starts at t = −∞, then the
initial condition does not matter. However, if we want to
start evolution from t = t0, then α(t0) in the semiclassical
model should be treated as a random complex number, with
two-dimensional probability distribution equal to the Wigner
function W (α, α∗, t0), which is positive (and normalized) by
the above-discussed assumption.

The outgoing field [counterpart of Eq. (A3)] is

f (t ) = −v(t ) + √
κ α(t ), (A26)

and the measured quadrature signal fϕ (t ) for the quadrature
phase ϕ is

fϕ (t ) = 1
2 [e−iϕ f (t ) + eiϕ f ∗(t )]. (A27)

Our goal is to prove that the two-time correlator
Kq

ϕ1ϕ2 (t1, t2) for the signal fϕ (t ) calculated in the quantum way
(A8) is exactly equal to the correlator

Kϕ1ϕ2 (t1, t2) = 〈 fϕ1 (t1) fϕ2 (t2)〉, (A28)

calculated in the semiclassical model. Note that here α(t )
and fϕ (t ) contain contributions due to the “signal” αc(t ), in
contrast to the main text, where we considered only noise (in
the main text αc = 0).

Let us first check the equivalence for the singular contribu-
tion to the correlator at t1 = t2 (then ϕ1 = ϕ2 as well). From
Eqs. (A2)–(A5) we see that at zero temperature the singular
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part of the quantum correlator is (1/4) δ(t1 − t2), and from
Eqs. (A22) and (A26)–(A28) we obtain the same result for
the semiclassical correlator. Next, for the equivalence in the
case t1 	= t2, it is sufficient to consider t1 < t2 (because of the
symmetry). In this case the quantum correlator is given by
Eq. (A11), while the semiclassical correlator is

Kϕ1ϕ2 (t1, t2) = 1
2 Re[〈 f (t2) f (t1)〉 e−i(ϕ1+ϕ2 )

+ 〈 f ∗(t2) f (t1)〉 e−i(ϕ1−ϕ2 )]. (A29)

Therefore, we only need to prove two relations for t1 < t2:

〈 f (t2) f (t1)〉 = κ 〈a(t2) a(t1)〉, (A30)

〈 f ∗(t2) f (t1)〉 = κ 〈a†(t2) a(t1)〉. (A31)

Let us prove Eq. (A30) first [the proof of Eq. (A31) is
similar]. Using Eq. (A26) for f (t ), we can write the left-hand
side of Eq. (A30) as

〈 f (t2) f (t1)〉 = κ 〈α(t2) α(t1)〉 − √
κ 〈α(t2) v(t1)〉, (A32)

since 〈v(t2) α(t1)〉 = 0 for t1 < t2. Comparing this equation
with Eq. (A17a), we see that we can prove Eq. (A30) by
proving the following two relations:

〈α(t2) α(t1)〉 =
∫

α2 W (2|1) α1 W (1) d2α1d2α2, (A33)

−2√
κ

〈α(t2) v(t1)〉 =
∫

α2 W (2|1) ∂α∗
1
W (1) d2α1d2α2. (A34)

Note that in these relations, α(t ) in the left-hand side is the
semiclassical random process, while α1 and α2 in the right-
hand side are the integration variables.

To prove Eq. (A33), let us show that the Wigner function
W (α, α∗, t ) is equal to the probability distribution of α(t )
in the semiclassical model. Introducing the probability dis-
tribution P(x, p, t ) on the two-dimensional plane with real
coordinates x = Re(α) and p = Im(α), from the Langevin
equation (A25) with noise given by Eq. (A22), we can write
the standard Fokker-Planck equation

∂t P = −∂x

{[
−

(κ

2
+ Re

ε

2

)
x +

(
� − Im

ε

2

)
p + Im εc

]
P
}

− ∂p

{[
−

(κ

2
− Re

ε

2

)
p −

(
� + Im

ε

2

)
x − Re εc

]
P
}

+ κ

8

(
∂2

x + ∂2
p

)
P. (A35)

It is easy to check that if we formally introduce the same prob-
ability distribution as a function of α and α∗, i.e., P(x, p, t ) =
P̃(α, α∗, t ), then Eq. (A35) can be rewritten as

∂t P̃ = −∂α{[−(κ/2 + i�)α − (ε/2)α∗ − iεc]P̃}
− ∂α∗ {[−(κ/2 − i�)α − (ε∗/2)α + iε∗

c ]P̃}
+ (κ/2) ∂2

αα∗ P̃. (A36)

This is exactly the same equation as Eq. (A19) for the
Wigner function. Therefore, if W (α, α∗, t0) = P(x, p, t0) at
some initial time t0 (as we assumed above), then the Wigner
function will be equal to the probability distribution of α(t )
in the semiclassical model at any later time, W (α, α∗, t ) =
P(x, p, t ).

Thus, we have shown that W (1) in Eq. (A33) is equal to the
probability distribution of the semiclassical intracavity field α

at time t1. Similarly, the propagator W (2|1) in Eq. (A33) is
equal to the probability distribution of the field α(t2) at time
t2 in the semiclassical model if at time t1 < t2 the field is α1.
Therefore, Eq. (A33) is obviously valid.

It is a little more difficult to prove Eq. (A34). Let us
introduce discrete time with very small time steps �t → 0.
Then the average 〈α(t2) v(t1)〉 in the left-hand side of
Eq. (A34) is replaced with 〈α(t2) ṽ(t1)〉, where ṽ(t1) =
(1/�t )

∫ t1+�t
t1

v(t ) dt . Now ṽ(t1) is a (large) complex num-
ber, which is Gaussian-distributed with 〈|ṽ|2〉 = 1/(2�t )
and 〈ṽ〉 = 0. Because of the linearity of the Fokker-Planck
equation,

〈α(t2) ṽ(t1)〉 =
∫

α2P(2|1) 〈δP(1) ṽ(t1)〉 d2α1d2α2, (A37)

where P(2|1) is the propagator for probabilities [the same as
W (2|1), we have used a different notation only to empha-
size that we consider the semiclassical model], and δP(1) ≡
P(x1 + δx1, p1 + δp1, t1 + �t ) − P(x1, p1, t ) is the change of
the probability distribution between time moments t1 and
t1 + �t due to the kick to α(t ) produced by ṽ(t1). Note that
the averaging in the right-hand side of Eq. (A37) is only
over ṽ(t1), while in the left-hand side it also includes aver-
aging over random trajectories. As seen from Eq. (A25), the
noise ṽ(t1) shifts α(t1) by δα(t1) = √

κ ṽ(t1) �t , and therefore
the leading-order change of the probability distribution is
δP(1) = −√

κ [∂xP Re ṽ(t1) + ∂pP Im ṽ(t1)] �t . Now using
averages 〈ṽ(t1) Re ṽ(t1)〉�t = 1/4 and 〈ṽ(t1) Im ṽ(t1)〉�t =
i/4, we obtain

〈α(t2) ṽ(t1)〉 = −
√

κ

4

∫
α2P(2|1)

[
∂x1 P(1) + i∂p1 P(1)

]
× d2α1d2α2. (A38)

This equation is the same as Eq. (A34), since W (2|1) =
P(2|1) and ∂α∗

1
W (1) = (1/2) ∂x1 P(1) + (i/2) ∂p1 P(1) [as fol-

lows from the change of variables: x = (α + α∗)/2 and p =
(α − α∗)/2i]. Thus, we have proved Eq. (A34).

By proving Eqs. (A33) and (A34), we have proved
Eq. (A30). The proof of Eq. (A31) is very similar. Instead of
Eqs. (A33) and (A34), we need to prove the relations

〈α∗(t2) α(t1)〉 =
∫

α∗
2 W (2|1) α1 W (1) d2α1d2α2, (A39)

−2√
κ

〈α∗(t2) v(t1)〉 =
∫

α∗
2 W (2|1) ∂α∗

1
W (1) d2α1d2α2,

(A40)

which can be done in the same way as above.
Thus, we have shown that for a system with the Hamilto-

nian (A18), the quantum correlators (A1) are exactly equal
to the correlators (A28) calculated within the semiclassical
model.
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APPENDIX B: TRANSIENT SQUEEZING IN A WEAKLY
NONLINEAR RESONATOR

In the main text we considered the case of a linear res-
onator, with squeezing produced by a parametric drive. How-
ever, the main initial motivation for this work was to develop
a theory capable of calculating fluctuations of the integrated
signal in circuit QED measurement of a superconducting qubit
(these fluctuations are directly related to the probability of
error in qubit measurement). In the process of qubit mea-
surement, the squeezing is self-generated due to resonator
nonlinearity induced by interaction with the qubit [21,22].
Therefore, it is important to consider the nonlinear case as
well.

As shown in Ref. [22], in the case of a weakly nonlinear
resonator (typical in qubit measurement), the intracavity state
remains approximately Gaussian during the transient squeez-
ing caused by abruptly applied coherent drive. This is why
the theory developed in the main text is directly applicable
to this case as well. However, while for a linear resonator
our semiclassical theory is exact, for a weakly nonlinear
resonator it is only approximate, being based on the Gaussian
ansatz. (We believe it is a very good approximation for typical
parameters of a qubit measurement; however, the accuracy
still has to be analyzed.)

In a weakly nonlinear case, the Hamiltonian can be written
as

H =
∑

n

E (n)|n〉〈n| + i

4

[
ε∗a2 − εa†2] + ε∗

c a + εca†, (B1)

where |n〉 is nth eigenstate of the resonator and the rotating-
frame energy E (n) is related to the experimentally measur-
able (laboratory-frame) weakly changing resonator frequency
ωr (n) as

E (n) =
n−1∑
k=0

[ωr (k) − ωrf ]. (B2)

Here ωrf is an (arbitrary) rotating-frame frequency, for which
it is most natural to choose the frequency of the coherent
drive. A small difference between the frequencies of the
rotating frame, coherent drive, and (halved) parametric drive
can be taken into account by slowly changing the complex
amplitudes εc and ε. Note that for the qubit measurement we
do not need parametric drive, ε = 0, but we keep this term
for generality. Also note that the Hamiltonian (B1) uses the
basis of actual eigenstates, so the creation and annihilation
operators (which are constructed from x̂ and p̂ operators) sat-
isfy the relations 〈n|a†|k〉 = √

n δn−1,k, 〈k|a|n〉 = √
n δn−1,k ,

and a†a|n〉 = n|n〉 only approximately, and therefore we need
the assumption of weak nonlinearity to use these standard
relations (see [22]).

The main idea of using the semiclassical model in this case
is to separate evolution of the average field αc (corresponding
to the maximum of the Wigner function, which is assumed to
be Gaussian) and fluctuations δα,

α(t ) = αc(t ) + δα(t ), (B3)

so that the “center” evolves as

α̇c = −i[ωr (|αc|2) − ωrf ]αc − κ

2
αc − ε

2
α∗

c − iεc, (B4)

while for fluctuations we use linearization [37,39] near the
center,

d

dt
δα = −i

[
ωr (|αc|2) − ωrf + dωr

dn
|αc|2

]
δα − κ

2
δα

−
(

ε

2
+ i

dωr

dn
α2

c

)
(δα)∗ + √

κ v(t ), (B5)

where dωr (n)/dn is evaluated at n = |αc|2. Note that
the terms with dωr/dn come from the contribution
−iαc(dωr/dn) 2Re(α∗

c δα) describing the resonator frequency
change due to fluctuations.

Equation (B5) has the same form as Eq. (6) in the main text,
with α replaced by δα (in the main text we considered only
fluctuations) and also � and ε replaced by the corresponding
terms in Eq. (B5). Therefore, squeezing of fluctuations in
the case of a weakly nonlinear resonator is still described
by Eqs. (16)–(18) of the main text (α → δα, f → δ f ≡ f −√

κ αc), with the following replacements in Eq. (14) of the
main text:

� → ωr (|αc|2) − ωrf + dωr (n)

dn

∣∣∣∣
n=|αc|2

|αc|2, (B6)

ε → ε + 2i
dωr (n)

dn

∣∣∣∣
n=|αc|2

α2
c , (B7)

where αc depends on time via Eq. (B4).
As an example, Fig. 3 illustrates the self-developing

squeezing of the field leaked from the resonator in the process
of circuit QED measurement of a superconducting transmon
qubit (for the qubit in the ground state |0〉). We assume that the
readout resonator with frequency ωr/2π = 6 GHz is coupled
to a superconducting transmon qubit with frequency ωq/2π =
5 GHz and anharmonicity of η/2π = 250 MHz (see, e.g.,
Ref. [21] for details and notations). The assumed coupling
of g/2π = 104 MHz produces the dispersive shift of the
resonator frequency 2χ/2π = 5 MHz; the resonator damping
is κ/2π = 5 MHz. The resonator is coherently driven (starting
at t = 0) with the amplitude ε/2π = 19.1 MHz and detuning
� = χ = 2π × 2.5 MHz (as in the standard circuit QED
measurement); in the steady state this drive produces on
average 46.2 photons in the resonator, which is equal to 2ncrit ,
where ncrit = (ωr − ωq )2/4g2 is the so-called critical number
of photons. The assumed parameters are typical for the state-
of-the-art fast measurement of transmons (e.g., Ref. [42]).

Nonlinearity of the transmon induces a weak nonlinearity
ωr (n) of the resonator, which is computed numerically [21]
(in particular, in the steady state the resonator frequency
decreases by 1.22 MHz). This weak nonlinearity leads to the
self-developing squeezing illustrated in Fig. 3. The lines in
the upper and lower panels show parameters A, B, φ, and ψ

defined in Eq. (21) of the main text (similar to Fig. 2 of the
main text). The figure shows dependence of these parameters
on τ = t2 − t1 for several values of t1 (κt1 = 2, 4, 6, and ∞).
We see that in the steady state (i.e., for κt1 = ∞) φ(τ ) =
ψ (τ ), so that the correlator Kϕ1ϕ2 (t1, t1 + τ ) is characterized
by three parameters (all depending on τ ), while in transients
four parameters are needed. These four parameters (depend-
ing on τ and t1) are sufficient to find the noise of the integrated
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FIG. 3. Transient evolution of the self-developing squeezing in
the process of circuit QED measurement of a transmon qubit. The
lines show the correlator parameters A, B, φ, and ψ , defined in
Eq. (21) of the main text, as functions of τ = t2 − t1 for several
values of t1 (κt1 = 2, 4, 6, and ∞, corresponding to red, green,
blue, and black lines). In the upper panel, A(τ ) are negative, B(τ )
are positive. In the lower panel, solid lines show ψ (τ ), dashed lines
show φ(τ ). The assumed circuit QED parameters are described in
the text; they are typical for the state-of-the-art fast measurement of
transmon qubits (n̄ = 2ncrit). The resulting squeezing in the steady
state is 6.8 dB.

signal
∫

w(t ) fϕ (t ) dt for an arbitrary time-dependent phase
ϕ(t ) and an arbitrary weight function w(t ), as discussed in the
main text.

In particular, in the steady state the squeezing is 6.8 dB,
i.e., the noise variance of the integrated signal for the properly
chosen quadrature (ϕ = 0.19) is a factor of 4.8 less than
for vacuum (the antisqueezing is also 6.8 dB). This large
magnitude of self-developing squeezing clearly shows the
importance of the analysis for circuit QED measurement of
superconducting qubits.

APPENDIX C: SOME TECHNICAL DETAILS

1. Phase-sensitive vs phase-preserving amplifier

In the main text, we have assumed a phase-sensitive
amplifier with a time-dependent amplified quadrature phase
ϕ(t ). In this case only the homodyne output signal fϕ (t ) is
available from an experiment [see Fig. 1(a) of the main text],
while the orthogonal quadrature is deamplified and therefore
is not measurable. Correspondingly, even though the experi-
mentally measurable correlator Kϕ1ϕ2 (t1, t2) ≡ 〈 fϕ1 (t1) fϕ2 (t2)〉
can be formally expressed via Kf f (t1, t2) ≡ 〈 f (t1) f (t2)〉 and
Kf f ∗ (t1, t2) ≡ 〈 f (t1) f ∗(t2)〉 [see Eq. (8) of the main text], the
field correlators Kf f and Kf f ∗ are not directly measurable
because f (t ) is not available from an experiment.

The situation is different for a setup based on a phase-
preserving amplifier (heterodyne measurement). Then all

quadratures are equally amplified, and from the two experi-
mental normalized outputs I (t ) and Q(t ) we can construct the
standard complex combination

fpp(t ) = I (t ) + iQ(t ), (C1)

so that for any phase ϕ(t ), the quadrature signal

fϕ, pp(t ) = Re[e−iϕ(t ) fpp(t )] (C2)

can be obtained from the same experiment (here the subscript
“pp” indicates the phase-preserving case).

However, a phase-preserving amplifier necessarily has an
“additional noise” [35], which increases the total noise by at
least a factor of 2 compared with the ideal phase-sensitive
amplifier. (The additional noise is essentially the price for
simultaneous measurement of noncommuting quadratures.)
Therefore, the output fpp(t ) in the phase-preserving case can
be related to the leaked field f (t ) considered in the main text
as

fpp(t ) = f (t ) + v′(t ), (C3)

where the complex-valued additional noise v′(t ) is uncor-
related with the noise v(t ) introduced in the semiclassical
formalism, and

〈v′(t1) v′(t2)〉 = 0, 〈v′(t1) v′∗(t2)〉 = (1/2 + na ) δ(t1 − t2).

(C4)

Here na = 0 for a quantum-limited phase-preserving ampli-
fier, while na > 0 characterizes an extra noise compared with
the quantum-limited case. Note that the additional noise v′
does not drive the intracavity field fluctuations α(t ), affecting
only the output signal.

In the phase-preserving case, the correlators

Kpp
f f (t1, t2) ≡ 〈 fpp(t1) fpp(t2)〉, (C5)

Kpp
f f ∗ (t1, t2) ≡ 〈 fpp(t1) f ∗

pp(t2)〉 (C6)

are measurable directly. Their relation to the correlator
Kpp

ϕ1ϕ2 (t1, t2) ≡ 〈 fϕ1, pp(t1) fϕ2, pp(t2)〉 is the same as in Eq. (8)
of the main text [this trivially follows from Eq. (C2)]. The im-
portant difference, however, is that Kpp

ϕ1ϕ2 (t1, t2) is well defined
for ϕ1 	= ϕ2 even when t1 = t2, in contrast to Kϕ1ϕ2 (t1, t2) in
the phase-sensitive case.

From Eqs. (C3) and (C4) it follows that for different time
moments the correlators in the phase-preserving and phase-
sensitive cases coincide,

Kpp
ϕ1ϕ2

(t1, t2) = Kϕ1ϕ2 (t1, t2), t1 	= t2. (C7)

However, the singular contributions are different: in the phase-
preserving case

Kpp
ϕ1ϕ2

(t1, t2 ≈ t1) = 1 + n̄b + na

2
cos(ϕ1 − ϕ2)

× δ(t2 − t1), (C8)

while in the phase-sensitive case

Kϕ1ϕ1 (t1, t2 ≈ t1) = 1/2 + n̄b + na

2
δ(t2 − t1), (C9)

where we have also included nonideality of a phase-sensitive
amplifier by similarly adding na in the numerator.
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To verify experimentally the theory developed in this pa-
per, it is easier to use a phase-preserving amplifier (which
gives direct access to Kf f and Kf f ∗ ) instead of a phase-
sensitive amplifier, while the correlators at t1 	= t2 coincide—
see Eq. (C7). However, a phase-sensitive amplifier is needed
in real applications for measurements well beyond the stan-
dard quantum limit. For example, in the simplest phase-
sensitive steady-state case discussed in Eq. (3) of the main
text, squeezing can in principle provide a very large (unlim-
ited) suppression of the integrated noise variance. In contrast,
in the phase-preserving case the noise suppression can be
only up to the factor of 2, because of the additional noise.
We expect a similar relation for measurement in transients;
however, this is still a subject of future research.

2. Effect of energy loss

The signal from the leaked field can be partially lost in
the transmission line because of the energy decay in the
transmission line. Moreover, insertion of a circulator leads to
an extra decay (typically around 0.5 dB). If we characterize
the total energy decay between the resonator and the ampli-
fier by the decrease of the efficiency ηloss from the perfect
value of 1, then the field reaching the amplifier decreases as
f → √

ηloss f . Correspondingly, the nonsingular part of the
correlators decreases as

Kϕ1ϕ2 (t1, t2) → ηlossKϕ1ϕ2 (t1, t2), t1 	= t2, (C10)

and similarly for Kf f and Kf f ∗ . However, the singular part of
the correlator (at t2 ≈ t1) is not affected by the energy loss
because it physically originates from the noise of the ampli-
fier. An alternative explanation of the fact that Kϕ1ϕ1 (t1, t2 ≈
t1) does not change with ηloss can be based on inserting
a fictitious beam splitter with transmission coefficient ηloss

between the resonator and the amplifier. Then the decrease
of the propagating vacuum fluctuations (at t2 ≈ t1) due to
imperfect transmission ηloss is exactly compensated by extra
vacuum fluctuations with relative strength 1 − ηloss, coming
from the other arm of the beam splitter.

A similar effect on the correlators is produced by the
extra decay in the resonator, leading to κ > κout, where κout

is the resonator damping due to coupling with the outgoing
transmission line, while κ is the total energy decay rate for
the resonator (which includes coupling to other transmission
lines, energy loss in the surrounding dielectric materials, etc.).
The effect can also be modelled by a fictitious beam splitter
with transmission coefficient κout/κ inserted into the transmis-
sion line [between the circulator and amplifier in Fig. 1(a) of
the main text]. Therefore, the correlators derived in this paper
(for the same κ) are decreased as

Kϕ1ϕ2 (t1, t2) → (κout/κ ) Kϕ1ϕ2 (t1, t2), t1 	= t2, (C11)

with the same relation for Kf f and Kf f ∗ . The singular part
of the correlator is again not affected (because it physically
originates from the amplifier or, alternatively, because of the
extra vacuum noise coming from the beam splitter).

Combining the effects of extra energy decay in the res-
onator and transmission line, we obtain

Kϕ1ϕ2 (t1, t2) → ηcol Kϕ1ϕ2 (t1, t2), t1 	= t2, (C12)

Kϕ1ϕ1 (t1, t2 ≈ t1) → Kϕ1ϕ1 (t1, t2 ≈ t1), (C13)

where ηcol = (κout/κ )ηloss is the total collection efficiency.
As an example, for 1 dB loss in the collection efficiency, all

correlators at t1 	= t2 are multiplied by the factor 0.794. Since
the collection efficiency loss between 1 and 2 dB is typical
in circuit QED experiments (e.g., Ref. [43]), the squeezing
correlators discussed in this paper should be easily measurable
experimentally (with the decrease by less than a factor of 2
due to losses).

Note that while the correlators discussed in this paper
are affected only by the collection efficiency ηcol, the actual
applications of the transient squeezing will depend on the total
quantum efficiency η = ηcolηamp, which includes the quantum
efficiency ηamp of the amplifier.

3. Three vs four parameters for squeezing in transients

As discussed in the main text, dependence of the correlator
Kϕ1ϕ2 (t1, t2) on quadratures ϕ1 and ϕ2 can always be described
by three real parameters in the steady state, while in transients
four parameters are generally needed. However, there are at
least two special cases discussed here, when three parameters
are sufficient even in transients.

The first special case is when there is no detuning, � =
0, and the parametric pump phase θ is time independent, so
that the drive amplitude ε(t ) = |ε(t )| eiθ changes in time only
because of (an arbitrary) time dependence |ε(t )|. In this case
we can redefine the quadratures to set θ = 0; then the matrix
M(t ) [given by Eq. (14) of the main text] is real, and therefore
the Green’s function G(t |tin ) in Eq. (16) of the main text is
also real. As a consequence, the matrix given by Eq. (18) of
the main text is also real (assuming that the evolution starts
from t0 = −∞ or assuming that 〈α2(t0)〉 is real), and therefore
all terms in Eq. (17) of the main text are real. Thus, Kf f (t1, t2)
and Kf f ∗ (t1, t2) are both real, giving us two real parameters.
Adding the phase θ (which was zeroed in the rotated basis),
we obtain three parameters.

The second special case is when θ is time-independent, the
detuning � is arbitrary, but time-independent, and |ε(t )| is
a step function: |ε(t < 0)| = 0 and |ε(t � 0)| = const. The
derivation in this case is lengthier, but it is also based on
Eqs. (14)–(18) of the main text (assuming vacuum state at
t0 = 0). The analytical result shows that Kf f ∗ (t1, t2) is real
for arbitrary t1 and t2, and numerical simulations confirm this
result. Therefore, in this case only three real parameters are
sufficient again.

4. Derivation of Eq. (18) of the main text

From Eq. (6) of the main text for the intracavity field
fluctuation α(t ) and Eq. (14) of the main text for the evolution
matrix M, we obtain

d

dt

[
α(t )
α∗(t )

]
= M(t )

[
α(t )
α∗(t )

]
+ √

κ

[
v(t )
v∗(t )

]
. (C14)
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The solution of this equation can be written in terms of the
Green’s function G(t |t ′) [2 × 2 matrix defined in Eq. (16) of
the main text], which gives[

α(t1)
α∗(t1)

]
= G(t1|t0)

[
α(t0)
α∗(t0)

]

+ √
κ

∫ t1

t0

G(t1|t ′)
[

v(t ′)
v∗(t ′)

]
dt ′. (C15)

From this equation and Eq. (5) of the main text we obtain[
〈|α2(t1)|〉 〈α2(t1)〉
〈α∗2(t1)〉 〈|α2(t1)|〉

]

= κ (1 + 2n̄b)

2

∫ t1

t0

G(t1|t ′) G†(t1|t ′) dt ′

+ G(t1|t0)

[
〈|α2(t0)|〉 〈α2(t0)〉
〈α∗2(t0)〉 〈|α2(t0)|〉

]
G†(t1|t0), (C16)

which becomes Eq. (18) of the main text at zero temperature,
n̄b = 0.

Note that instead of using Eq. (18) of the main text, the
evolution of the intracavity squeezing can be obtained from
differential equations (similar to Ref. [22]),

d

dt
〈α2〉 = (−2i� − κ )〈α2〉 − ε 〈|α|2〉, (C17)

d

dt
〈|α|2〉 = −κ〈|α|2〉 − Re(ε∗〈α2〉) + κ (n̄b + 1/2), (C18)

staring with an initial condition at t = t0.

5. Derivation of Eqs. (22)–(23) of the main text

We consider the special case when there is no detun-
ing, � = 0, and the parametric drive ε = |ε| eiθ has a time-
independent amplitude |ε| = const, while the phase θ (t )
abruptly changes from θ (t ) = 0 for t < 0 to θ (t ) = θ̃ = const
for t > 0. The temperature is assumed to be zero. We are
interested in the correlators after the phase jump, so we

assume t1 > 0 and τ = t2 − t1 > 0. These correlators can be
obtained from Eqs. (16)–(18) of the main text. Let us first
calculate the propagator G from Eq. (16):

G(t1 + τ |t1) = exp(Mτ )

= 1

2

[
e− κ−τ

2 + e− κ+τ

2 (e− κ+τ

2 − e− κ−τ

2 )eiθ̃

(e− κ+τ

2 − e− κ−τ

2 )e−iθ̃ e− κ−τ

2 + e− κ+τ

2

]
,

(C19)

where κ± = κ ± |ε| and the matrix M is given by Eq. (14) of
the main text with � = 0 and ε = |ε|eiθ̃ . As the next step, to
find 〈α2(t1)〉 and 〈|α(t1)|2〉, we use Eq. (18) of the main text
with the initial condition at t0 = 0 (which is the steady state
before the jump),[ 〈α2(0)〉

〈|α2(0)|〉
]

= κ

4

[
1/κ+ − 1/κ−
1/κ+ + 1/κ−

]
, (C20)

which gives

〈α2(t1)〉 =
[

1

4

( κ

κ+
− κ

κ−

)
+ i

sin θ

4

( κ

κ−
− κ

κ+

)
e−κt1

+ 1 − cos θ

8

( κ

κ−
− κ

κ+

)
(e−κ−t1 + e−κ+t1 )

]
eiθ̃ ,

(C21)

〈|α2(t1)|〉 = 1

4

( κ

κ+
+ κ

κ−

)

− 1 − cos θ

8

( κ

κ−
− κ

κ+

)
(e−κ−t1 − e−κ+t1 ).

(C22)

Note that (C21)–(C22) reduce to Eq. (C20) when θ̃ = 0.
Finally, using Eq. (17) of the main text with the propagator
G given by Eq. (C19) and the initial condition given by
Eqs. (C21)–(C22), we obtain Eqs. (22)–(23) of the main text
for the correlators Kf f (t1, t1 + τ ) and Kf f ∗ (t1, t1 + τ ).
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