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HAMILTONIAN

The Hamiltonian of the coupled qubit-resonator sys-
tem can be written as

H = Hb +HI (1)

where Hb is the “bare” Hamiltonian of the qubit and
resonator, while HI describes their capacitive coupling.
With the ket convention |qubit, resonator〉, the bare
Hamiltonian has the form

Hb =
∑
k,n

(Ek + n~ωr) |k, n〉〈k, n| (2)

where ωr is the (bare) resonator frequency, and Ek is the
transmon energy of level k, calculated numerically us-
ing Mathieu characteristic functions [1]. The transmon
transition frequencies are ωkl ≡ (Ek − El)/~ and its an-
harmonicity is η ≡ ω21−ω10. This bare Hamiltonian pro-
duces the Jaynes-Cummings (JC) ladder of energy levels,
shown in Fig. 3 in the main text.

The interaction Hamiltonian HI, given by Eq. (2) in
the main text, is due to charge-charge coupling between
the resonator and transmon. It can be divided into two
parts,

HI = HRWA +Hnon-RWA , (3)

where HRWA contains only terms conserving total exci-
tation number, while Hnon-RWA contains the rest of the
terms. HRWA has the form

HRWA =
∑
k,n

~gk,k+1

√
n |k + 1, n− 1〉〈k, n|+ H.c. , (4)

where gk,k′ ≡ g〈k|Q|k′〉/〈0|Q|1〉 are the normalized ma-
trix elements of the transmon charge operator Q. These
matrix elements are calculated numerically using Math-
ieu functions. In the case k′ = k+1, the matrix elements
are approximately (for not very large values of k)

gk,k+1 ≈ g
√
k + 1

(
1 +

η

2ω10
k

)
. (5)
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FIG. 1. Ac Stark shift of the transmon frequency as a function
of the number of resonator photons n, for parameters of Fig.
2 in the main text (nc ≈ 60), using HRWA. The solid line
shows the value computed numerically, and the dashed line
shows the conventional linear approximation δω10 = −2 |χ|n.
As n becomes large, the relation between ac Stark shift and
photon number becomes somewhat nonlinear.

By diagonalizing Hb + HRWA, we find the eigenstates
|k, n〉 and eigenenergies E|k,n〉, which we use to numeri-

cally compute the frequencies ωk(n) = E|k,n−k〉/~− nωr

within each RWA strip (see the fan energy diagram in
Fig. 4a in the main text).

From Hb + HRWA we also numerically compute
the photon number dependent ac Stark shift δω10 ≡(
E|1,n〉 − E|0,n〉

)
/~ − ω10, as illustrated in Fig. 1. This

map between resonator photon number and transmon
ac Stark shift, which provides the calibration between
drive power and photon number discussed in the main
text, was the critical link between theory and experiment.
Notice that Eq. (4) goes beyond the usual dispersive ap-
proximation [2]. In particular, the numerically computed
curve deviates noticeably from the usual linear relation
δω10 = −2 |χ|n.

The rest of the charge-charge interaction terms do not
preserve excitation number, and are called here “non-
RWA” terms. Although some of these terms are as large
as RWA terms, they are usually neglected since they
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are more off-resonant than RWA terms. However, these
terms connect RWA strips and therefore enable resonant
transitions in the JC ladder, as explained in the main
text. In general, there are many types of non-RWA terms,
which differ in coupling strength and in how close they
are to resonantly connecting two JC ladder levels. We
only consider terms involving gk,k+1 and gk,k+3, as they
are the largest and least off-resonant,

H
(1)
non-RWA =

∑
k,n

~ gk,k+1

√
n+ 1 |k + 1, n+ 1〉〈k, n|+ H.c.

+
∑
k,n

~ gk,k+3

√
n |k + 3, n− 1〉〈k, n|+ H.c. .

(6)

The couplings gk,k+3 are calculated numerically; they are
much smaller than gk,k+1, as seen from the approximate
formula

gk,k+3 ≈ g
√

(k + 1)(k + 2)(k + 3)
−η

4ω10
. (7)

In spite of being relatively small, these couplings are nu-
merically more important in our problem than couplings
gk,k+1. We note that Hnon-RWA induces slight changes in
the eigenenergies E|k,n〉, but the effect is small enough

that we neglect it.
Equation (6) does not have any terms of the form

gk,k+2, and therefore only connects RWA strips differing
in total excitation number by 2, which we call “next-
nearest neighbors” (see Fig. 3 in the main text). The ab-
sence of gk,k+2 terms is due to the symmetry of the trans-
mon potential (in the phase basis). However, the real
system violates this selection rule (see Fig. 2b discussed
later and also the discussion in the main text). Account-
ing for the broken symmetry adds terms to Hnon-RWA,

H
(2)
non-RWA =

∑
k,n

~ gk,k+2

√
n |k + 2, n− 1〉〈k, n|+ H.c. .

(8)
The non-RWA terms of Eq. (8) connect RWA strips differ-
ing in total excitation number by 1, which we call “near-
est neighbors” (see Fig. 3 in the main text), leading to ad-
ditional resonance processes, such as |0, n〉 → |3, n− 2〉.

EFFECTIVE COUPLING

When a resonance occurs between the initial state
|0, n〉 and, e.g., |6, n− 4〉, the system can make a res-
onant transition. In the perturbative language, in mak-
ing this transition the system goes through several in-
termediate off-resonant states (see Fig. 3 in the main
text); many different paths are available (i.e. differ-
ent virtual processes). As an example, one path is
|0, n〉 → |1, n− 1〉 → |4, n− 2〉 → |5, n− 3〉 → |6, n− 4〉,
which involves the matrix element g1,4. The condition of

resonance is necessary but not sufficient to give these pro-
cesses a measurably large probability; the process must
also have large enough effective coupling between initial
and final states. We define the effective coherent coupling
gcoh

eff as

gcoh
eff = 〈kf , nf |Hnon-RWA|ki, ni〉 , (9)

where |ki, ni〉 and |kf , nf 〉 are the initial and final eigen-
states, respectively. To find gcoh

eff , we expand the (RWA)
eigenstates in the bare state basis,

|k, n〉 =

kmax∑
l=0

c
(k,n)
l |l, n+ k − l〉, (10)

where kmax ' 9 is the highest transmon level taken into
account. This expansion is then substituted into Eq. (9).
In particular, for the transition |0, n〉 → |k, n− k + 2〉
(to the next-nearest neighboring RWA strip) the effective
coupling is

gcoh
eff =

∑
l
c
(0,n)
l ~gl,l+1

√
n− l + 1

[
c
(k,n−k+2)
l+1

]∗
+
∑

l
c
(0,n)
l ~gl,l+3

√
n− l

[
c
(k,n−k+2)
l+3

]∗
. (11)

Each term in Eq. (11) corresponds to a particular path
in the picture of virtual processes. The paths in the first
line are |0, n〉 → |l, n−l〉 → |l+1, n−l+1〉 → |k, n−k+2〉,
where the first and last arrows describe subpaths within
the RWA strips. Similarly, the terms in the second line
correspond to paths |0, n〉 → |l, n−l〉 → |l+3, n−l−1〉 →
|k, n− k + 2〉.

The solid red line in Fig. 2a shows gcoh
eff for the |0, n〉 →

|6, n− 4〉 transition (so that n corresponds to the res-
onance condition E|0,n〉 ≈ E|6,n−4〉), calculated using

Eq. (9) or, equivalently, Eq. (11). Note that the terms
in Eq. (11) are large at n > nc because gl,l+1

√
n ≈

|∆|
√
l + 1

√
n/4nc (typically a few GHz) and the ampli-

tudes cl are significant for several states within the RWA
strip. Nevertheless, the result for gcoh

eff shown by the solid
red line in Fig. 2a is smaller than even one such term.
The reason is an almost perfect cancellation of the terms
in Eq. (11), which happens because while the coefficients

c
(k,n−k+2)
l alternate in sign with changing l for l < k, the

coefficients c
(0,n)
l are all positive [3]. Therefore, the terms

in Eq. (11) have alternating signs and efficiently cancel
each other.

This cancellation is probably not so efficient in the
real physical system. When the transmon is in an up-
per state, it is more sensitive to noise sources (such as
charge noise) and therefore experiences increased dephas-
ing. This and the relatively low coherence of the res-
onator (1/κr ≈ 37 ns) may suppress coherence between
the different paths contributing to Eq. (11). While it is
difficult to accurately calculate the effective coupling geff



3

(a)

(b)

at
cr

os
si

ng

4.9 5.0 5.1 5.2 5.3 5.4 5.5
10- 3

10- 2

10- 1

1

FIG. 2. (a) Effective coupling between crossing levels for dif-
ferent qubit frequencies. Solid and dashed lines show coherent
and incoherent effective couplings respectively. The blue line
assumes g0,2/g = 10−2. (b) Experimental observation of Rabi
oscillation between transmon levels |0〉 and |2〉.

while accounting for decoherence, we can estimate the
upper bound of the resulting geff as the fully incoherent
sum of the terms in Eq. (11),

gincoh
eff =

(∑
l

∣∣∣c(0,n)
l ~gl,l+1

√
n− l + 1

[
c
(k,n−k+2)
l+1

]∗∣∣∣2
+
∑

l

∣∣∣c(0,n)
l ~gl,l+3

√
n− l

[
c
(k,n−k+2)
l+3

]∗∣∣∣2)1/2

.

(12)

The red dashed line in Fig. 2a shows gincoh
eff for the

|0, n〉 → |6, n− 4〉 transition. We expect that the ef-
fective couplings in real system are between the results
for fully coherent and fully incoherent cases (solid and
dashed lines). The experimental feature B (which corre-
sponds to the transition |0, n〉 → |6, n− 4〉) can be well
explained by effective coupling on the order of 1 MHz,
which is in agreement with these theoretical values (note
that g/2π ≈ 87 MHz).

As discussed in the main text, the experimental fea-
ture A can be explained only if the state can transition
between neighboring RWA strips (differing in total exci-

tation number by 1). However, if the transmon poten-
tial were exactly left/right symmetric, as is usually as-
sumed, then gk,k+2 = 0, and this transition is forbidden.
Therefore, to explain the feature A, we must assume that
the transmon’s symmetry is broken, leading to the addi-
tional non-RWA terms given in Eq. (8). We calculated
the effective coupling at the |0, n〉 → |3, n− 2〉 resonance,
hypothesizing that gk,k+2 = 0.01 g

√
(k + 1)(k + 2) (i.e.,

1% violation of the selection rule). The coupling for a
coherent process is calculated via Eq. (9), which for the
transitions |0, n〉 → |k, n− k + 1〉 between the nearest-
neighbor RWA strips produces

gcoh
eff =

∑
l
c
(0,n)
l ~gl,l+2

√
n− l

[
c
(k,n−k+1)
l+2

]∗
. (13)

The numerical result, indicated by the solid blue line in
Fig. 2a, shows that this 1% violation of the selection rule
yields an effective coupling of a few MHz, which is large
enough to explain the experimental feature A. The cou-
pling becomes a few times larger if we assume the fully
incoherent sum of the contributions from the paths in Eq.
(13) (constructed similarly as Eq. (12))– see the dashed
blue line in Fig. 2a. However, since the qubit state |3〉 is
not supposed to experience a significant level of decoher-
ence, we believe that the solid blue line is more relevant
to the experimental situation than the dashed blue line.
It is interesting to note that the difference between the
dashed and solid blue lines is much smaller than between
the dashed and solid red lines, indicating that the cancel-
lation of terms in Eq. (13) is not as efficient as in Eq. (11).
This is because for the transition |0, n〉 → |3, n− 2〉 there
are only two main terms in Eq. (13): those involving g0,2

and g1,3.

We experimentally looked for and actually observed
the selection rule violation for g0,2 by directly driving
Rabi oscillations between transmon levels |0〉 and |2〉, as
shown in Fig. 2b. By comparing the |0〉 → |2〉 Rabi
oscillation period against the |0〉 ↔ |1〉 Rabi oscillation
period, and correcting for the differing microwave am-
plitude needed to drive those two transitions, we found
experimentally that g0,2/g ' 10−2, surprisingly in good
agreement with the guessed value. We emphasize that
the experimental value of 10−2 should be considered only
as an order of magnitude estimate.

We can offer only speculations about the possible phys-
ical mechanism behind the broken symmetry in the trans-
mon. For example, it could result from SQUID asym-
metry under external flux [4] or from a gradient of the
magnetic field which couples to oscillating current in the
circuit. However, these mechanisms are not investigated
here and will be the subject of further studies.
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FIG. 3. Example of a resonance between transmon and a
TLS. For a TLS with frequency 10 GHz, the level crossing
occurs between |0, n〉|0〉TLS and |2, n− 3〉|1〉TLS.

TLS-ASSISTED TRANSITIONS

It is well known that microscopic defects in the mate-
rials comprising the transmon circuit can act as two level
systems (TLS) and lead to qubit relaxation [5]. This re-
laxation can depend on the number of photons n in the
resonator because of the ac Stark shift. Since ac Stark
shift is approximately δω10 = −2 |χ|n ' −(|η| /2)(n/nc),
the change of the qubit frequency is quite significant
(∼ η ≈ −200 MHz) when n is comparable to nc. There-
fore, even if the bare qubit frequency is chosen away from
the TLS frequencies, it is possible that the qubit fre-
quency will cross a TLS during measurement with a mod-
erate value of n/nc. In fact, we have experimentally ob-
served this effect by comparing the transmon relaxation
rate as a function of ω10 with n = 0 against that same re-
laxation rate during dispersive measurement. We found
that the ac Stark shift induced by the resonator photons
during dispersive measurement pushes the transmon into
resonance with TLS’s and therefore increases the relax-
ation rate (data not shown). Of course, increased relax-
ation degrades the fidelity of the quantum state measure-
ment, so these crossings should be avoided.

Interestingly, coupling between the transmon and
TLS’s may also lead to transitions of the transmon to
higher levels, similar to the effect of the non-RWA cou-
plings associated with resonator. The level crossings as-
sociated with TLS’s produce features similar to those
produced by the non-RWA processes, such as dependence
on ∆.

For example, the transmon can be excited from |0〉
to |2〉 via the following virtual process: |0, n〉|0〉TLS →
|1, n − 1〉|0〉TLS → |2, n − 2〉|0〉TLS → |3, n − 3〉|0〉TLS →

|2, n−3〉|1〉TLS. This process requires ωTLS ≈ ωr+2 |∆|+
|η| (the exact value is a little larger because of the level
repulsion – see Fig. 3). The effective coupling for these
resonances can be large enough to yield noticeable pop-
ulation transfer at lower photon numbers than for the
non-RWA resonances. The example shown in Fig. 3 has
a TLS with a frequency of 10 GHz and the resonance for
the process described above occurs at n/nc ≈ 1. This
value is sufficient for a noticeable amplitude of the bare

state |3, n− 3〉 (c
(0,n)
3 ≈ 0.03) and therefore a noticeable

effective coupling for the process.
A TLS-assisted qubit transition from |0〉 to |1〉 requires

only population of the bare state |2, n − 2〉, and there-
fore the effective coupling becomes significant at values
of n/nc smaller than for the transition |0〉 → |2〉. For
example, for the parameters, corresponding to the peak
in the |1〉 probability (red line) in Fig. 2c of the main text
(n/nc ≈ 1.7), the amplitude of the |2〉 component is quite

significant, c
(0,n)
2 ≈ 0.2. Therefore, even a weak cou-

pling between the transmon and a TLS with frequency
ωTLS/2π ≈ 8.4 GHz can explain this experimental peak.
Note that when the TLS is sufficiently incoherent (e.g.,
because of fast energy relaxation), then the resonance
condition could transform into a threshold-like condition,
i.e., it should be enough energy to excite the TLS, also
exciting the qubit, by transferring two photons from the
resonator into the qubit-TLS system.

With increasing n/nc and therefore increasing popu-
lation of bare states |k, n − k〉, the number of possible
TLS-assisted processes becomes larger (involving more
final states), which increases the possibility of a transi-
tion away from the initial qubit state. We guess that the
TLS-assisted processes may be responsible for the usual
deterioration of qubit measurement fidelity in many ex-
periments when increasing n becomes comparable to nc
(causing either excitation or relaxation of the transmon
state).
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